497 research outputs found

    Race/Ethnic and Educational Disparities in the Association Between Pathogen Burden and a Laboratory-Based Cumulative Deficits Index

    Get PDF
    Background: Disparities in adult morbidity and mortality may be rooted in patterns of biological dysfunction in early life. We sought to examine the association between pathogen burden and a cumulative deficits index (CDI), conceptualized as a pre-clinical marker of an unhealthy biomarker profile, specifically focusing on patterns across levels of social disadvantage. Methods: Using the data from the National Health and Nutrition Examination Survey 2003–2004 wave (aged 20–49 years), we examined the association of pathogen burden, composed of seven pathogens, with the CDI. The CDI comprised 28 biomarkers corresponding to available clinical laboratory measures. Models were stratified by race/ethnicity and education level. Results: The CDI ranged from 0.04 to 0.78. Nearly half of Blacks were classified in the high burden pathogen class compared with 8% of Whites. Among both Mexican Americans and other Hispanic groups, the largest proportion of individuals were classified in the common pathogens class. Among educational classes, 19% of those with less than a high school education were classified in the high burden class compared with 7% of those with at least a college education. Blacks in the high burden pathogen class had a CDI 0.05 greater than those in the low burden class (P < 0.05). Whites in the high burden class had a CDI only 0.03 greater than those in the low burden class (P < 0.01). Discussion: Our findings suggest there are significant social disparities in the distribution of pathogen burden across race/ethnic groups, and the effects of pathogen burden may be more significant for socially disadvantaged individuals. © 2019, W. Montague Cobb-NMA Health Institute

    Processing of the Sperm Protein Sp17 during the Acrosome Reaction and Characterization as a Calmodulin Binding Protein

    Get PDF
    In this study we have demonstrated that the native rabbit sperm protein, Sp17, is a 22- to 24-kDa triplet of proteins in washed ejaculated rabbit spermatozoa and is unaffected by capacitation. However, during the acrosome reaction, Sp17 is processed from a 22- to 24-kDa triplet of proteins to a triplet of proteins at 17-19 kDa by the removal of amino acids from the C-terminal. Recombinant rabbit Sp17 (rRSp17) can also be proteolytically processed by acrosome-reacted spermatozoa in a similar manner. Protease inhibitors prevent the proteolytic processing of Sp17. Both forms of native Sp17 remain associated with acrosome-reacted spermatozoa and are solubilized by ionic detergents. Previously, sequence analysis of Sp17 revealed that Sp17 amino acids 108-137 were 52% identical to the calmodulin binding domain of neuromodulin and contained an IQ motif found in other calmodulin binding proteins. In this study, a truncated recombinant Sp17, rRSp17CB, which lacks amino acids 118-146, including the potential calmodulin binding site, was made. Recombinant rabbit Sp17, but not rRSp17CB, binds to calmodulin in the presence of Ca2+ or EDTA, under reduced or nonreduced conditions in biotinylated-calmodulin overlay assays. In DSS crosslinker experiments, calmodulin bound to rRSp17 in a 1:1 ratio but not to rRSp17CB. Additionally, biotinylated rRSp17 interacts with native sperm calmodulin. We propose that the processing of native Sp17, by removing a C-terminal fragment during the acrosome reaction, might be a mechanism to regulate the calmodulin binding activity of Sp17 and provide calmodulin at specific sites after the acrosome reaction

    Investigating pathogen burden in relation to a cumulative deficits index in a representative sample of US adults

    Get PDF
    Pathogen burden is a construct developed to assess the cumulative effects of multiple, persistent pathogens on morbidity and mortality. Despite the likely biological wear and tear on multiple body systems caused by persistent infections, few studies have examined the impact of total pathogen burden on such outcomes and specifically on preclinical markers of dysfunction. Using data from two waves of the National Health and Nutrition Examination Survey, we compared three alternative methods for measuring pathogen burden, composed of mainly persistent viral infections, using a cumulative deficits index (CDI) as an outcome: single pathogen associations, a pathogen burden summary score and latent class analyses. We found significant heterogeneity in the distribution of the CDI by age, sex, race/ethnicity and education. There was an association between pathogen burden and the CDI by all three metrics. The latent class classification of pathogen burden showed particularly strong associations with the CDI; these associations remained after controlling for age, sex, body mass index, smoking, race/ethnicity and education. Our results suggest that pathogen burden may influence early clinical indicators of poor health as measured by the CDI. Our results are salient since we were able to detect these associations in a relatively young population. These findings suggest that reducing pathogen burden and the specific pathogens that drive the CDI may provide a target for preventing the early development of age-related physiological changes. © 2018 Cambridge University Press

    Association of sperm protein 17 with A-kinase anchoring protein 3 in flagella

    Get PDF
    BACKGROUND: Sperm protein 17 (Sp17) is a three-domain protein that contains: 1) a highly conserved N-terminal domain that is 45% identical to the human type II alpha regulatory subunit (RII alpha) of protein kinase A (PKA); 2) a central sulphated carbohydrate-binding domain; and 3) a C-terminal Ca++/calmodulin (CaM) binding domain. Although Sp17 was originally discovered and characterized in spermatozoa, its mRNA has now been found in a variety of normal mouse and human tissues. However, Sp17 protein is found predominantly in spermatozoa, cilia and human neoplastic cell lines. This study demonstrates that Sp17 from spermatozoa binds A-kinase anchoring protein 3 (AKAP3), confirming the functionality of the N-terminal domain. METHODS: In this study in vitro precipitation and immunolocalization demonstrate that Sp17 binds to AKAP3 (AKAP110) in spermatozoa. RESULTS: Sp17 is present in the head and tail of spermatozoa, in the tail it is in the fibrous sheath, which contains AKAP3 and AKAP4. Recombinant AKAP3 and AKAP4 RII binding domains were synthesized as glutathione S-transferase (GST) fusion proteins immobilized on glutathione-agarose resin and added to CHAPS extracts of human spermatozoa. Western blots of bound and eluted proteins probed with anti-Sp17 revealed that AKAP3 bound and precipitated a significant level of Sp17 while AKAP4 did not. AKAP4 binds AKAP3 and expression of AKAP3 is reduced in AKAP4 knockout sperm, therefore we tested AKAP4 knockout spermatozoa for Sp17 and found that there was a reduction in the amount of Sp17 expressed when compared to wild type spermatozoa. Co-localization of AKAP3 and Sp17 by immunofluorescence was demonstrated along the length of the principal piece of the flagella. CONCLUSIONS: As predicted by its N-terminal domain that is 45% identical to the human RIIα of PKA, Sp17 from spermatozoa binds the RII binding domain of AKAP3 along the length of the flagella

    Non-hormonal male contraception: A review and development of an Eppin based contraceptive

    Get PDF
    Developing a non-hormonal male contraceptive requires identifying and characterizing an appropriate target and demonstrating its essential role in reproduction. Here we review the development of male contraceptive targets and the current therapeutic agents under consideration. In addition, the development of EPPIN as a target for contraception is reviewed. EPPIN is a well characterized surface protein on human spermatozoa that has an essential function in primate reproduction. EPPIN is discussed as an example of target development, testing in non-human primates, and the search for small organic compounds that mimic contraceptive antibodies; binding EPPIN and blocking sperm motility. Although many hurdles remain before the success of a non-hormonal male contraceptive, continued persistence should yield a marketable product

    Physical Activity, Sedentary Behavior, and Retirement: The Multi-Ethnic Study of Atherosclerosis

    Get PDF
    Introduction: Physical activity and sedentary behavior are major risk factors for chronic disease. These behaviors may change at retirement, with implications for health in later life. The study objective was to describe longitudinal patterns of moderate to vigorous and domain-specific physical activity and TV watching by retirement status. Methods: Participants in the Multi-Ethnic Study of Atherosclerosis (n=6,814) were recruited from six U.S. communities and were aged 45–84 years at baseline. Retirement status and frequency and duration of domain-specific physical activity (recreational walking, transport walking, non-walking leisure activity, caregiving, household, occupational/volunteer) and TV watching were self-reported at four study exams (2000 to 2012). Fixed effect linear regression models were used to describe longitudinal patterns in physical activity and TV watching by retirement status overall and stratified by socioeconomic position. Analyses were conducted in 2017. Results: Of 4,091 Multi-Ethnic Study of Atherosclerosis participants not retired at baseline, 1,012 (25%) retired during a median of 9 years follow-up. Retirement was associated with a 10% decrease (95% CI= –15%, –5%) in moderate to vigorous physical activity and increases of 13% to 29% in recreational walking, household activity, and TV watching. Among people of low socioeconomic position, the magnitude of association was larger for moderate to vigorous physical activity. Among people of high socioeconomic position, the magnitude of association was larger for non-walking leisure and household activity. Conclusions: The retirement transition was associated with changes in physical activity and TV watching. To inform intervention development, future research is needed on the determinants of behavior change after retirement, particularly among individuals of low socioeconomic position. © 2018 American Journal of Preventive Medicin

    Depletion of the histone chaperone tNASP inhibits proliferation and induces apoptosis in prostate cancer PC-3 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NASP (Nuclear Autoantigenic Sperm Protein) is a histone chaperone that is present in all dividing cells. NASP has two splice variants: tNASP and sNASP. Only cancer, germ, transformed, and embryonic cells have a high level of expression of the tNASP splice variant. We examined the consequences of tNASP depletion for prostate cancer PC-3 cells.</p> <p>Methods</p> <p>tNASP was depleted from prostate cancer PC-3 cells, cervical cancer HeLa cells, and prostate epithelial PWR-1E cells using lentivirus expression of tNASP shRNA. Cell cycle changes were studied by proliferation assay with CFSE labeling and double thymidine synchronization. Gene expression profiles were detected using RT<sup>2</sup>Profiler PCR Array, Western and Northern blotting.</p> <p>Results</p> <p>PC-3 and HeLa cells showed inhibited proliferation, increased levels of cyclin-dependant kinase inhibitor p21 protein and apoptosis, whereas non-tumorigenic PWR-1E cells did not. All three cell types showed decreased levels of HSPA2. Supporting in vitro experiments demonstrated that tNASP, but not sNASP is required for activation of HSPA2.</p> <p>Conclusions</p> <p>Our results demonstrate that PC-3 and HeLa cancer cells require tNASP to maintain high levels of HSPA2 activity and therefore viability, while PWR-1E cells are unaffected by tNASP depletion. These different cellular responses most likely arise from changes in the interaction between tNASP and HSPA2 and disturbed tNASP chaperoning of linker histones. This study has demonstrated that tNASP is critical for the survival of prostate cancer cells and suggests that targeting tNASP expression can lead to a new approach for prostate cancer treatment.</p

    Site-directed Mutagenesis of Rabbit Proacrosin: IDENTIFICATION OF RESIDUES INVOLVED IN ZONA PELLUCIDA BINDING

    Get PDF
    The mammalian acrosomal sperm protease proacrosin plays a role in fertilization by proteolysis of the oocyte's outer investments. In addition to its serine protease activity, acrosin from several species is known to have binding activity for the zona pellucida, and this action may serve to anchor sperm during zona penetration. In this study, proacrosin was purified from acid extracts of rabbit sperm and shown to bind to homologous zona pellucida using an in vitro assay. Measurement of this binding activity indicated a high affinity saturable interaction with a KD = 1.4 x 10(-8) M. Using cDNAs obtained from previously cloned and sequenced rabbit proacrosin and a splice variant that encodes a shorter form of acrosin (Richardson, R. T., and O'Rand, M. G. (1994) Biochim. Biophys. Acta 1219, 215-218), constructs of various sizes were produced using polymerase chain reaction and expressed as recombinant proteins. In the same in vitro zona binding assay, a construct representing residues 1-279 of rabbit proacrosin was found to bind to zona with a high affinity similar to that of native proacrosin, KD = 2.1 x 10(-8) M. By making smaller recombinant fragments and assaying them for zona binding activity, the location of the binding site was mapped to residues 47-94. Protein modeling of rabbit proacrosin using chymotrypsinogen A as a three-dimensional model indicated that an exposed loop Asp35 to His40 in chymotrypsinogen A is extended with an additional five amino acid residues in rabbit proacrosin from Ile43 to His53 containing arginine residues Arg47, Arg50 and Arg51. Site-directed mutagenesis of arginine residues Arg50 and Arg51 to alanine produced a recombinant without significant zona binding activity. These results are consistent with the hypothesis that rabbit proacrosin contains a specific zona pellucida binding site and that the loop containing arginine residues 50 and 51 is critical for zona binding activity

    Loss of Calcium in Human Spermatozoa via EPPIN, the Semenogelin Receptor1

    Get PDF
    The development of a new male contraceptive requires a transition from animal model to human and an understanding of the mechanisms involved in the target's inhibition of human spermatozoan fertility. We now report that semenogelin (SEMG1) and anti-EPPIN antibodies to a defined target site of 21 amino acids on the C terminal of EPPIN cause the loss of intracellular calcium, as measured by Fluo-4. The loss of intracellular calcium explains our previous observations of an initial loss of progressive motility and eventually the complete loss of motility when spermatozoa are treated with SEMG1 or anti-EPPIN antibodies. Thimerosal can rescue the effects of SEMG1 on motility, implying that internal stores of calcium are not depleted. Additionally, SEMG1 treatment of spermatozoa decreases the intracellular pH, and motility can be rescued by ammonium chloride. The results of this study demonstrate that EPPIN controls sperm motility in the ejaculate by binding SEMG1, resulting in the loss of calcium, most likely through a disturbance of internal pH and an inhibition of uptake mechanisms. However, the exact steps through which the EPPIN-SEMG1 complex exerts its effect on internal calcium levels are unknown. Anti-EPPIN antibodies can substitute for SEMG1, and, therefore, small-molecular weight compounds that mimic anti-EPPIN binding should be able to substitute for SEMG1, providing the basis for a nonantibody, nonhormonal male contraceptive

    Analysis of gene expression profiles in HeLa cells in response to overexpression or siRNA-mediated depletion of NASP

    Get PDF
    Abstract Background NASP (Nuclear Autoantigenic Sperm Protein) is a linker histone chaperone required for normal cell division. Changes in NASP expression significantly affect cell growth and development; loss of gene function results in embryonic lethality. However, the mechanism by which NASP exerts its effects in the cell cycle is not understood. To understand the pathways and networks that may involve NASP function, we evaluated gene expression in HeLa cells in which NASP was either overexpressed or depleted by siRNA. Methods Total RNA from HeLa cells overexpressing NASP or depleted of NASP by siRNA treatment was converted to cRNA with incorporation of Cy5-CTP (experimental samples), or Cy3-CTP (control samples). The labeled cRNA samples were hybridized to whole human genome microarrays (Agilent Technologies, Wilmington, Delaware, USA). Various gene expression analysis techniques were employed: Significance Analysis of Microarrays (SAM), Expression Analysis Systematic Explorer (EASE), and Ingenuity Pathways Analysis (IPA). Results From approximately 36 thousand genes present in a total human genome microarray, we identified a set of 47 up-regulated and 7 down-regulated genes as a result of NASP overexpression. Similarly we identified a set of 56 up-regulated and 71 down-regulated genes as a result of NASP siRNA treatment. Gene ontology, molecular network and canonical pathway analysis of NASP overexpression demonstrated that the most significant changes were in proteins participating in organismal injury, immune response, and cellular growth and cancer pathways (major "hubs": TNF, FOS, EGR1, NFκB, IRF7, STAT1, IL6). Depletion of NASP elicited the changed expression of proteins involved in DNA replication, repair and development, followed by reproductive system disease, and cancer and cell cycle pathways (major "hubs": E2F8, TP53, FGF, FSH, FST, hCG, NFκB, TRAF6). Conclusion This study has demonstrated that NASP belongs to a network of genes and gene functions that are critical for cell survival. We have confirmed the previously reported interactions between NASP and HSP90, HSP70, histone H1, histone H3, and TRAF6. Overexpression and depletion of NASP identified overlapping networks that included TNF as a core protein, confirming that both high and low levels of NASP are detrimental to cell cycle progression. Networks with cancer-related functions had the highest significance, however reproductive networks containing follistatin and FSH were also significantly affected, which confirmed NASP's important role in reproductive tissues. This study revealed that, despite some overlap, each response was associated with a unique gene signature and placed NASP in important cell regulatory networks
    corecore