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Abstract
Background: NASP (Nuclear Autoantigenic Sperm Protein) is a linker histone chaperone required for normal
cell division. Changes in NASP expression significantly affect cell growth and development; loss of gene function
results in embryonic lethality. However, the mechanism by which NASP exerts its effects in the cell cycle is not
understood. To understand the pathways and networks that may involve NASP function, we evaluated gene
expression in HeLa cells in which NASP was either overexpressed or depleted by siRNA.

Methods: Total RNA from HeLa cells overexpressing NASP or depleted of NASP by siRNA treatment was
converted to cRNA with incorporation of Cy5-CTP (experimental samples), or Cy3-CTP (control samples). The
labeled cRNA samples were hybridized to whole human genome microarrays (Agilent Technologies, Wilmington,
Delaware, USA). Various gene expression analysis techniques were employed: Significance Analysis of Microarrays
(SAM), Expression Analysis Systematic Explorer (EASE), and Ingenuity Pathways Analysis (IPA).

Results: From approximately 36 thousand genes present in a total human genome microarray, we identified a
set of 47 up-regulated and 7 down-regulated genes as a result of NASP overexpression. Similarly we identified a
set of 56 up-regulated and 71 down-regulated genes as a result of NASP siRNA treatment. Gene ontology,
molecular network and canonical pathway analysis of NASP overexpression demonstrated that the most
significant changes were in proteins participating in organismal injury, immune response, and cellular growth and
cancer pathways (major "hubs": TNF, FOS, EGR1, NFκB, IRF7, STAT1, IL6). Depletion of NASP elicited the
changed expression of proteins involved in DNA replication, repair and development, followed by reproductive
system disease, and cancer and cell cycle pathways (major "hubs": E2F8, TP53, FGF, FSH, FST, hCG, NFκB,
TRAF6).

Conclusion: This study has demonstrated that NASP belongs to a network of genes and gene functions that are
critical for cell survival. We have confirmed the previously reported interactions between NASP and HSP90,
HSP70, histone H1, histone H3, and TRAF6. Overexpression and depletion of NASP identified overlapping
networks that included TNF as a core protein, confirming that both high and low levels of NASP are detrimental
to cell cycle progression. Networks with cancer-related functions had the highest significance, however
reproductive networks containing follistatin and FSH were also significantly affected, which confirmed NASP's
important role in reproductive tissues. This study revealed that, despite some overlap, each response was
associated with a unique gene signature and placed NASP in important cell regulatory networks.
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Background
Nuclear autoantigenic sperm protein (NASP) is highly
expressed in all dividing cells including embryonic and
malignant tissues as either tNASP (testicular/embryonic
isoform) or sNASP (somatic/embryonic isoform). Human
tNASP contains three functional histone binding sites;
sNASP is the shorter version of tNASP with two deletions
in the coding region arising from alternative splicing,
resulting in two histone binding sites. In embryonic and
transformed cell lines both sNASP and tNASP are
expressed and tNASP is present in a variety of malignant
tumors [1]. Different cancer types as well as different
stages of the same cancer demonstrate specific NASP RNA
expression profiles, for example expression levels are up
regulated in grade 1 and 2 versus grade 3 in breast cancer
[2], estrogen receptor positive versus negative tumor
types, or sporadic versus BRCA1/BRCA2 mutation posi-
tive tumors [3]. Thus, the NASP expression profile could
be used to establish the "poor prognosis signature" which
consists of genes regulating cell cycle, invasion, metastasis
and angiogenesis [4]. Indeed, NASP has been reported as
a serologic marker for ovarian cancer, which could be suit-
able for clinical testing in high-risk populations [5].

NASP has interactions with a variety of chromatin remod-
eling proteins: 1) linker H1 histones [1], 2) CAF1(p150,
p60, p48) and HIRA in DNA synthesis dependent or inde-
pendent nucleosome assembly pathways promoted by
histone H3.1 and H3.3 complexes [6,7], 3) proteins
involved in DNA repair (NASP is phosphorylated after
DNA damage by irradiation of U2OS cells [8] and binds
to Ku70/Ku80 and DNA PK in HeLa cells [9]). As a linker
histone H1 chaperone, NASP binds linker histones in the
cytoplasm and transports them into the nucleus [10],
where NASP facilitates the incorporation of linker his-
tones onto nucleosome arrays [11]. The present list of
NASP interacting proteins is far from complete because
Sun et al. [12] reported 356 network connectivity episodes
for NASP in developing embryonic stem cells, suggesting
numerous direct protein-protein interactions.

NASP is a tightly regulated cell cycle protein because both
increased levels of NASP by overexpression [13] and
decreased levels induced by siRNA treatment [14] cause
disruption of the cell cycle. NASP mRNA levels increase
during S-phase and decline during G2concomitant with
histone mRNA levels [1] and NASP is required for cell sur-
vival because the NASP-/- null mutation causes embryonic
lethality [14]. Because HeLa cells have well studied signal-
ing pathways and are easy to transfect, we chose them to
study the general effect of increased or decreased NASP
levels. Those networks and pathways that are involved in
reproductive physiology were identified and will be fur-
ther studied in reproductive tissues.

Methods
Materials
All chemicals and reagents used in this study were molec-
ular biology grade. Restriction enzymes were purchased
from Roche Applied Science (Indianapolis, Indiana,
USA). Purification of plasmid DNA and PCR products was
carried out using QIAprep Miniprep and QIAquick PCR
purification kits (Qiagen, Valencia, California, USA);
sequencing was performed at the University of North
Carolina at Chapel Hill automated sequencing facility.
Goat antiserum to full-length human recombinant tNASP
(GenBank: AAH10105) was made by Bethyl Laboratories
(Montgomery, Texas, USA).

NASP overexpression
The entire coding sequence of mouse tNASP (nucleotides
92–2405, GenBank: AF034610) was amplified from
mouse testis Quick-clone cDNA (Clontech, Palo Alto, Cal-
ifornia, USA) using the Expand High Fidelity PCR System
(Roche Applied Science, Indianapolis, Indiana, USA) and
cloned into a Kpn1/BamH1 site in the pEGFP-N1 vector
(Clontech, Palo Alto, California, USA) which contains the
sequence for the green fluorescent protein. To prevent
possible effects of the expressed GFP [15], the GFP
sequence was removed. All constructs were sequenced to
verify the correct reading frame. Plasmid-DNA complexes
were transiently transfected into HeLa cells using Effect-
ene transfection reagent (Qiagen, Valencia, California,
USA) according to the manufacturer's recommendations.
This method is based on a non-liposomal lipid formula-
tion, and resulted in low cytotoxicity and high transfec-
tion efficiency (~97%) as determined by FACS analysis
[13]. Control cells were transfected with the transfection
reagent only (Effectene transfection reagent, Qiagen,
Valencia, California, USA). This choice of control cell
treatment was based on the data that "mock" transfection
with lipid formulation transfection reagents could con-
sistently affect gene expression [16]. Transfection effi-
ciency was confirmed by Western blotting: lysates from
HeLa cells overexpressing tNASP were separated by SDS-
PAGE, blotted and probed with goat anti-NASP affinity
purified antibody.

siRNA transfection
A series of siRNAs targeting the human NASP open read-
ing frame were designed (Dharmacon, Lafayette, CO) and
one (GCACAGUUCAGCAAAUCUAdTdT) was found to
effectively deplete both tNASP and sNASP from HeLa cells
[14]. Transfection with C2 siRNA, which had no cellular
target, served as a negative control [17]. HeLa cells (8.5–
10 × 105 cells per well in a 24-well plate) were transfected
with NASP and C2 siRNA utilizing a two-hit siRNA trans-
fection method with Lipofectamine™2000 for 18 hr as
described [17]. Twenty four hours after the first transfec-
tion cells were trypsinized and split into 6-well plates.
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Forty eight hours after the first transfection cells were re-
transfected. Ninety hours after the initial transfection cells
were harvested for RNA purification.

RNA isolation and hybridization of RNA to oligonucleotide 
arrays
Total cellular RNA was purified from HeLa cells using
RNeasy® Mini Kit (Qiagen, Valencia, California, USA)
according to the manufacturers' instructions. RNA sam-
ples representing four separate experiments from cells
overexpressing tNASP and four experiments from cells
treated with NASP siRNA, along with appropriate con-
trols, were submitted for analysis. After the RNA Quality
check was performed the double-stranded cDNA was syn-
thesized from RNA via MMLV reverse transcriptase.
Amplified labeled cRNA was created via T7 RNA polymer-
ase, which simultaneously amplifies the target material
and incorporates Cy3- or Cy5-labeled CTP with at least a
100-fold RNA amplification rate. cRNA from treated cells
was amplified with incorporation of Cy5-CTP (fluores-
cent in the red region), while cRNA from control samples
was labeled by Cy3-CTP (fluorescent in the green region)
and purified. cDNA synthesis, cRNA synthesis, amplifica-
tion and labeling were done using the Low RNA Input Lin-
ear Amplification Kit (Agilent Technologies, Wilmington,
Delaware, USA). The labeled cRNA samples were then
fragmented in fragmentation buffer at 60°C for 30 min
before the microarray hybridization. Each sample was
hybridized to a whole separate Human Genome (4 × 44K)
microarray (Agilent Technologies, Wilmington, Delaware,
USA) overnight at 65°C in a hybridization oven. The
hybridization slides were washed, stabilized, dried, and
immediately scanned by Agilent Technologies Microarray
Scanner (Agilent Technologies, Wilmington, Delaware,
USA). RNA hybridization was performed in the Genomics
and Bioinformatics Core Facility (Lineberger Comprehen-
sive Cancer Center, UNC-CH) according to the protocol
suggested by Agilent (Agilent Technologies, Wilmington,
Delaware, USA).

Statistical analysis
During the initial analysis at UNC Microarray Database
(Genomics and Bioinformatics Core Facility, Lineberger
Comprehensive Cancer Center, UNC-CH), all genes were
retrieved, appropriately annotated, and filtered. Eventu-
ally, only genes with an absolute value of a Log2 Red/
Green Lowess Normalized Ratio of at least 1 (doubled in
intensity) for all 4 arrays were selected. The complete
processed and raw data were deposited in Gene Expres-
sion Omnibus (GEO) and can be found as GSE14972
[18].

The UNC Microarray Database analysis generated a list of
genes with an altered expression (at least 2 fold increased/
decreased) between overexpression/depletion and mock

treated samples. To identify which of these genes were sig-
nificantly differentially expressed (significant genes) we
used a statistical technique called SAM (Significance Anal-
ysis of Microarrays; [19]). SAM assigns a score to each
gene on the basis of a change in gene expression relative
to the standard deviation of repeated measurements. For
genes with scores greater than an adjustable threshold,
SAM uses permutations of the repeated measurements to
estimate the percentage of genes identified by chance –
the false discovery rate (FDR). Analysis parameters (Delta)
were set to result in zero FDR.

To provide a rapid biological interpretation (from "genes
to themes") of the obtained data, significant genes from
SAM analysis were analyzed by the Expression Analysis
Systematic Explorer (EASE). EASE calculates over repre-
sentation with respect to the total number of genes
assayed and annotated within each system to allow com-
parisons of categories from categorization systems [20].
We used three main categories: biological processes, cellu-
lar components, and molecular function. For each classi-
fication within the category the Fisher exact probability of
over representation was calculated. Presented in this study
the EASE score serves as a p-value to the Fisher exact prob-
ability that weights significance in favor of themes sup-
ported by more genes [20].

Functional interpretation of significant genes in the con-
text of gene ontology, molecular networks and relevance
to canonical pathways was generated through the use of
Ingenuity Pathways Analysis (IPA 6.5 software, Ingenuity
Systems® [21]). Gene ontology analysis was based on an
approach similar to EASE analysis, but the main categories
used were in connection to top biological functions: dis-
eases and disorders, molecular and cellular functions, and
physiological system development and function. The sig-
nificant genes were categorized, compared to genetic cate-
gories in the IPA database, and ranked according to p-
values. P-values less than 0.05 indicate a statistically sig-
nificant, non-random association between a set of signifi-
cant genes and a set of all genes related to a given function
in Ingenuity's knowledge base [22]. The IPA analysis
determined the subcategories within each category sup-
plied with an appropriate p-value and the number of
genes identified.

The set of significant genes was used to find possible con-
nections between genes/gene products and other genes
based on interactions previously reported in the literature.
Intermolecular connections were presented as molecular
networks. Interacting genes (not found in SAM analysis
but present in the IPA knowledge base) were used by IPA
software to connect smaller groups of significant genes
into a larger network. Since the size of the created network
could potentially be enormous, the IPA software limited
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the number of molecules in the network to 35, leaving
only the most important ones based on the number of
connections for each focus gene (focus genes = a subset of
uploaded significant genes having direct interactions with
other genes in the database) to other significant genes
[23]. Focus molecules and interacting molecules are pre-
sented separately. Networks are scored based on the
number of focus molecules in the network, its size, the
total number of focus molecules analyzed, and the total
number of molecules in the knowledge database that
could potentially be included in the networks [23]. The
network score is the negative log of Fisher's Exact Test p-
value. Only networks with a score of at least 10 (p-value
of 10-10) were analyzed.

The final IPA analysis compared the list of significant
genes with established pathways associated with metabo-
lism and signaling (canonical pathway analysis). The
results are presented in a diagram based on scoring and
the ratio of significant genes present in the canonical path-
way to the total number of molecules in the canonical
pathway. The threshold level was set at p = 0.05. These
analyses determined which pathways were involved
under our experimental conditions.

Results and discussion
SAM analysis
SAM analysis resulted in identification of groups of genes
that were significantly differentially expressed after over-
expression or depletion of NASP in HeLa cells at least two
fold in all four experiments. Overexpression of tNASP in
HeLa cells significantly affects the expression level of 54
genes (0.14% of 39,064 genes included in the microar-
ray): 47 (0.12%) were up-regulated and 7 (0.02%) were
down-regulated. Figure 1A shows a scatter plot summary
of up-regulated and down-regulated genes from cells over-
expressing NASP. Inhibition of NASP expression by siRNA
treatment significantly affected the expression of 127
genes (0.32%): 56 (0.14%) were up-regulated and
71(0.18%) were down-regulated. Figure 1B shows a scat-
ter plot summary of up-regulated and down-regulated
genes from cells treated with NASP siRNA. The different
ratios between up-regulated and down-regulated genes
demonstrate that there was no bias between overexpres-
sion, siRNA treatment, and control groups due to dye
affinity misbalance. The list of significant genes is pre-
sented in table 1.

EASE analysis
All genes reported in table 1 were subjected to Gene
Ontology (GO) clustering by EASE software [20]. EASE
analysis is presented in table 2 and table 3. Themes with a
p value of < 0.05 and with at least three genes in the cate-
gory are reported [24].

In HeLa cells overexpressing tNASP, EASE identified 39
up-regulated and 5 down-regulated GO categories (table
2). Fourteen percent of up-regulated genes are located on
chromosome 4. In the group of up-regulated genes the
highest EASE score as well as the highest number of genes
was found within the categories represented by proteins
participating in the immune response, the response to
biotic and external stimuli, stress, and to pathogens. These
results may indicate a rather non-specific reaction of HeLa
cells to an excessive amount of expressed recombinant
NASP. Down-regulated genes in NASP overexpressing
cells represented proteins involved in transcription regu-
lator activity, transcription factor complex structure and
activity, and nucleoplasm structure.

Gene ontology categories affected in cells treated by
siRNA are presented in table 3. Most of the up-regulated
genes in this category are located on chromosome
1(17%), the same chromosome where the NASP gene is
located. In cells with inhibited NASP expression, up-regu-
lated categories (n = 13) represented gene products that
were involved in morphogenesis and organogenesis,
chromosome organization (chromosome, nucleic acid
binding, chromatin, DNA packaging, DNA binding),
development, and transporter activity. Down-regulated
genes in NASP deficient cells represented a group of pro-
teins involved in DNA packaging, nucleosome structure
and assembly, establishment and maintenance of chro-
matin architecture, DNA metabolism, chromosome
organization and biogenesis, chromatin assembly/disas-
sembly, and chromatin/chromosome structure (a total of
16 categories). This result is consistent with earlier obser-
vations that histone H1 transfer between NASP and DNA
affects chromatin structure [13].

Although EASE analysis identified general categories, it
did not provide detailed subcategories or connect identi-
fied genes to discrete disorders and functions. Therefore
additional functional GO analysis was carried out
employing the IAP 6.5 software.

IPA analysis
Top bio functions
Genes with altered expression in both NASP overexpres-
sion and inhibition experiments were analyzed by IPA
software. The analysis of the top eight affected functional
categories (highest significance) is presented in figure 2.
Each group of significant genes (A: up-regulated after
overexpression; B: down-regulated after overexpression;
C: up-regulated after siRNA treatment; D: down-regulated
after siRNA treatment) was over represented in the set of
genes related to some function or disease category. The
top affected subcategories are presented in Additional file
1, Additional file 2, Additional file 3 and Additional file 4.
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SAM identification of genes with significant changes in expressionFigure 1
SAM identification of genes with significant changes in expression. A. Scatter plot of the observed relative difference 
d(i) versus the expected relative difference dE(i) in cells overexpressing NASP. The solid line indicates the line for d(i) = dE(i), 
where the observed relative difference is identical to the expected relative difference. The dotted lines are drawn at a distance 
Delta 11.79 from the solid line. B. Scatter plot of the observed relative difference d(i) versus the expected relative difference 
dE(i) in cells treated with NASP siRNA. The solid line indicates the line for d(i) = dE(i), where the observed relative difference 
is identical to the expected relative difference. The dotted lines are drawn at a distance Delta 11.75 from the solid line.
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NASP overexpression
The highest scoring category in NASP overexpressing cells
was "organismal injury", subcategory "fibrosis" (p-value
6.35 × 10-14, represented by 13 genes: ATF3, IFI6, IFI27,
IFITM1, IL6, IL11, IRF7, IRF9, NT5E, OAS1, PTGS2,
STAT1, TNF). A high number of up-regulated genes were
functionally related to the "cell growth" subcategory, part
of the category "cellular proliferation" (22 molecules out
of 47 analyzed, including transcription factors ATF3,
DDIT3, FOSL1, RELB, STAT1, cytokines CXCL1, CXCL2,
CXCL3, TNF, IL6, IL8, IL11, IL1A, and growth factors
EREG, GDF15). The "apoptosis of eukaryotic cell" sub-
category of the "cell death" category was represented by an
overlapping with the "cell growth" set of genes (total= 24
genes). The most over represented subcategories in the
"cell cycle category" were "cell division process of cells
"and "arrest in cell division process of cells" with 18 and
12 molecules respectively. The category "cancer" had the
highest number of genes (30 out of 47 analyzed). The
leading number of molecules (16) was in the subcategory

"developmental process of tumor cell lines" and "apopto-
sis of tumor cell lines". "Immune response", "immuno-
logical disease", and "viral functions" categories were
selected as a result of the increased expression of a group
of cytokines: CXCL1, CXCL3, IL6, IL8, IL11, and TNF.

Down-regulated genes in NASP overexpressing cells were
over represented in a group of interrelated functions (fig-
ure 2B) mostly as a result of down-regulation of 4 signifi-
cant genes: transcription regulators EGR1, FOS, LMO1,
and NFE2. Their changed expression affected subcatego-
ries related to differentiation, maturation, and develop-
ment within such categories as cellular development
(subcategory "developmental process of blood cells", p-
value 1.25 × 10-4), hematological system (subcategory
"differentiation of blood cells", p-value 2.67 × 10-5), cell
morphology (subcategory "morphology of tumor cells",
p-value 3 × 10-5), immune system (subcategory "develop-
ment of macrophages", p-value 6.69 × 10-5), gene expres-
sion (subcategory "transactivation", p-value 2.1 × 10-3).

Table 1: List of genes affected by NASP's altered expression

OVEREXPRESSION siRNA TREATMENT
Up-regulated Down-regulated Up-regulated Down regulated
Function/Gene Function/Gene Function/Gene Function/Gene

Transcription regulators:
ATF3, DDIT3, ETV5, FOSL1, IRF7, 
IRF9, RELB, STAT1

Transcription regulators:
EGR1, FOS, LMO1, NFE2

Transcription regulators:
HMGB2, E2F8

Transcription/translational regulators:
SRF, HOXA10, EIF2C4

Transporters: AQP5 Enzymes:
ARL5A, CYP1B1, ME3, GSR, 
MANEA, GNG2, OGG1

Enzymes:
BIRC3, DDX60, IFIH1, OAS1, 
OAS3, OASL, PTGS2, RRAD

Others:
KR19, PLCXD3

Ion channel: KCNJ15 Enzymes:
ACADL, ACADSB, GLS, ARL1, CROT, 
DHTKD1, ENTPD7, FAAH2, GBP3, GATM, 
LIPH, SEPX1, ZDHHC2, UBE2N, SCCPDH

Cytokines:
CXCL1, CXCL2, CXCL3, TNF, 
IL11, IL1A, IL6, IL8

Kinases:
PI4K2B, PDGFRB

Kinases: MAP2K1, RFK

Growth factors:
DKK1, EREG, GDF15

Transmembrane receptors:
TNFRSF11B

Transmembrane receptors:
ITGB3, TLR3, ITGA5
Growth factors: FGF2

Phosphatases:
DUSP5, NT5E

G-protein coupled receptors:
F2RL1

Peptidases: CFI, CPA4

G-protein coupled receptors:
MRGPRD

Transporters:
ATP6V1G3, FMN1, PNMA2, 
SMC1A, SAA1, SLC25A32

Transporters:
ATP11A, ATP2B4, FABP5, NUPL1, SEC13, 
SLC25A43
Phosphatases: PPM1K

Others:
CLDN1, TNFAIP3, ZC3H12A, 
HRK, IFI27, IFI6, IFITM1, IGFL2, 
KRT34, LOC283454, PARP12, 
PARP9, PHLDA1, PPP1R15A, 
SAMD9L, STC2, GADD45A

Others:
ARL6IP6, C14ORF167, CALB1, 
CALML4, CGA, CCDC5, CRYAB, 
FSTL1, FGFBP3, PRR16, SSU72, 
DTWD2, FST, ZMYM6, HAPLN1, 
TMSL8, MKX, HCG1815491, 
KIF5C, SYTL5, MFAP5, PSIP1, 
LOC100130476, RDM1, MEX3C, 
PHACTR2, NAP1L5, TMEM64, 
RASSF8, SLITRK6, ZBED2, 
MEFF2, TES, RBM17, TMEM80, 
UBE2E3

Others:
CPEB3, DCBLD2, DCP2, DENND1B, 
TMEM9B, TNC, ERLIN2, EVI5, GCOM1, 
HIST1H1C, HIST1H2BK, ZFYVE26, 
HIST2H2AA3, ZBTB41, NASP, CDCP1, 
KIAA0329, LOC285535, LONRF1, 
GPR137B, OSTM1, PCDH7, PPP1R3B, 
TM9SF4, PPP1R9A, PRRG4, SLAIN2, 
TUBB3, SHOC2, GLT8D3, CNN1, 
SPOCD1, DYX1C1, TTC39A, ACTA1, 
ACTA2, CCDC109A, CCDC126
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All these categories are interrelated and the different level
of significance is a reflection of the total number of genes
in each category. The subcategory "arrest in G0/G1 phase
of eukaryotic cells" from category "cancer" had the highest
significance (p-value of 1.82 × 10-4) within a given cate-
gory.

NASP inhibition
Although up-regulated genes after siRNA treatment iden-
tified a list of discrete and diverse functional categories
(figure 2C), the number of molecules presented in each
subcategory was low (1–4). Therefore these categories and
subcategories were assigned a low significance. In the
"reproductive system disease" category the presence of
transcription regulator HMGB2 determined the subcate-

gories connected to the degeneration of Sertoli cells (p-
value 2.93 × 10-3), testicular cells (p-value 2.93 × 10-3),
and germ cells (p-value 2.03 × 10-2). Follistatin (FST) and
CGA (alpha subunit of glycoprotein hormones) identified
the categories related to degeneration of seminiferous
tubules (p-value 4.98 × 10-5), disease process of testicular
cells (p-value 1.38 × 10-3), infertility (p-value 6.67 × 10-3),
and several organ morphology subcategories (size of the
organ, CALB1, CGA, FST, KIF5C, p-value 7.98 × 10-4).
Transmembrane receptor TNFRSF11B determined the
selection of multiple subcategories associated with bone
mineral density (p-value 1.42 × 10-4) within the "connec-
tive tissue function" category as well as myogenesis (p-
value 2.89 × 10-2) within the "muscle development" cate-
gory. Subcategories related to vascular development were

Table 2: Gene ontology categories significantly (p < 0.05) up-regulated and down-regulated in HeLa cells overexpressing NASP

UP REGULATED DOWN REGULATED
P-value GO category P-value GO category

1.56e-011 immune response 6.75e-003 transcription regulator activity
2.24e-011 response to biotic stimulus 2.68e-002 transcription factor complex
7.52e-011 defense response 3.85e-002 transcription factor activity
5.30e-009 response to external stimulus 4.21e-002 DNA binding
1.16e-008 cytokine activity 4.75e-002 nucleoplasm
5.89e-008 receptor binding
7.08e-007 response to stress
1.12e-006 response to pest/pathogen/parasite
1.62e-006 inflammatory response
1.81e-006 response to wounding
2.39e-006 innate immune response
8.28e-006 growth factor activity
9.48e-005 response to chemical substance
1.96e-004 regulation of cell proliferation
3.26e-004 apoptosis
3.31e-004 regulation of cell cycle
3.36e-004 programmed cell death
3.46e-004 chemokine activity
3.46e-004 chemokine receptor binding
4.59e-004 cell death
4.87e-004 death
5.27e-004 cell proliferation
7.09e-004 regulation of cellular process
7.72e-004 regulation of biological process
8.20e-004 cell cycle arrest
9.52e-004 regulation of cell proliferation
1.83e-003 cell-cell signaling
3.38e-003 response to virus
3.38e-003 anti-apoptosis
7.00e-003 cell communication
7.10e-003 signal transducer activity
9.37e-003 cell cycle
1.15e-002 response to abiotic stimulus
1.61e-002 nucleic acid binding
2.58e-002 transcription factor activity
3.10e-002 transcription regulator activity
3.27e-002 response to DNA damage stimulus
3.27e-002 regulation of apoptosis
3.31e-002 response to endogenous stimulus
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determined by combined up-regulation of G-protein cou-
pled receptor F2RL1 and growth factor receptor PDGFRB.
In the cancer category cytochrome P450 (CYP1B1) and
PDGFRB identified the endometrial cancer (p-value 1.37
× 10-2) and endometrial carcinoma (p-value 1.68 × 10-2)
subcategories. Testis derived transcript (TES) was present
in subcategories tumorigenesis, breast cancer, and neopla-
sia. All 5 genes (CYP1B1, FST, HMGB2, PDGFRB, and
TNFRSF11B) were present in the "colorectal cancer" sub-
category.

After siRNA treatment down-regulated transmembrane
receptors ITGB3, ITGA5, and TLR3 determined the func-
tional categories "cell signaling", "cellular function",
"immune response", and "cancer" with subcategories
related to phagocytosis, adhesion, and binding. Down-
regulated transcription factor SRF (serum response factor)
and FGF2 (fibroblast growth factor 2) are reported in cat-
egories "cellular assembly", "cell death" and "muscle
development". Seventeen molecules are identified in the
subcategory "tumorigenesis" and "neoplasia" within the
"cancer" category. Along with transcription factor
HOXA10 and transmembrane receptors TLR3 and ITGB3,
other molecules ACTA2, CFI, CNN1, CPA4, DHTKD1,
FABP5, FGF2, HIST2H2AA3, ITGA5, LIPH, MAP2K1,
TNC, TUBB3, ZFYVE26 were present in these subcatego-
ries.

Network analysis
NASP overexpression
Network analysis assembled three networks from up-reg-
ulated genes after NASP overexpression (table 4A). The
network with the highest score (table 4A, network #1)
included gene products associated with TNF, which is a
multifunctional proinflammatory cytokine that belongs

to the tumor necrosis factor (TNF) superfamily. This
cytokine is involved in the regulation of a wide spectrum
of biological processes including cell proliferation, and
differentiation, and has been implicated in cancer and
autoimmune diseases [25]. In response to TNF and
growth factors, STAT1 protein (found up-regulated in
NASP overexpressing cells), is phosphorylated and trans-
locates to the nucleus where it acts as a transcription acti-
vator [26], mediating the expression of a variety of genes.
In this network ATF3 (activating transcription factor) is
connected with TNF, which is known to increase the
expression of human ATF3 mRNA in LoVo cells [27].

The other two networks (table 4A, network #2 and #3)
contained groups of interacting proteins that included
GADD45A, interleukins IL6, IL1A, chemokines CXCL3,
CXCL1, and NF-κB. NF-κB is a transcription factor that
mediates the transcription of proteins involved in cell sur-
vival, proliferation, and inflammatory responses, and is
the subject of active research for anti-cancer therapy [28].
The protein encoded by the GADD45A gene induces
apoptosis and cell cycle arrest by maintaining p38 and c-
JNK MAPK activation in keratinocytes. The absence of
Gadd45a results in loss of sustained p38/JNK MAPK activ-
ity that leads to inadequate p53 activation and loss of nor-
mal activation of G1 and G2 checkpoints [29].

Only one network was assembled from the down-regu-
lated genes after NASP overexpression (table 4B). It
included TNF, FOS, LMO1, EGR1, NFE2, KRT19, and
AQP5. TNF, FOS, and NFκB are the "hubs" that suggests
possible involvement of this network in cell proliferation,
differentiation, and transformation. The presence of tran-
scriptional regulator EGR suggests cancer suppressor activ-
ity [30].

Table 3: Gene ontology categories significantly (p < 0.05) up-regulated and down-regulated in HeLa cells treated with NASP siRNA

UP REGULATED DOWN REGULATED
P-value GO category P-value GO category

1.10e-003 morphogenesis 1.51e-002 DNA packaging
2.10e-003 organogenesis 1.59e-002 cell adhesion receptor activity
7.68e-003 chromosome 1.67e-002 fatty acid metabolism
1.00e-002 nucleic acid binding 1.73e-002 muscle development
1.22e-002 chromatin 2.54e-002 carboxylic acid metabolism
1.36e-002 nucleic acid metabolism 2.95e-002 nucleosome assembly
1.69e-002 development 3.04e-002 chromatin architecture
2.02e-002 response to radiation 3.18e-002 nucleosome
2.11e-002 DNA packaging 3.33e-002 acyl-CoA dehydrogenase activity
3.19e-002 extracellular space 3.63e-002 chromosome organization
4.64e-002 intracellular transporter activity 3.90e-002 nuclear organization and biogenesis
4.84e-002 DNA binding 4.25e-002 DNA metabolism
4.96e-002 transporter activity 4.39e-002 chromatin assembly/disassembly

4.73e-002 chromatin
4.79e-002 development
4.87e-002 chromosome
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Top functions affected as a result of altered gene expressionFigure 2
Top functions affected as a result of altered gene expression. Functions determined by: A. Up-regulated genes 
after NASP overexpression. B. Down-regulated genes after NASP overexpression. C. Up-regulated genes after NASP deple-
tion. D. Down-regulated genes after NASP depletion. Bars represent -log (p-value) for disproportionate representation of 
affected genes in the total number of genes in the selected function/disease category. Threshold (red line) denotes the p = 0.05 
level.
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Table 4: The highest scoring networks after NASP overexpression

A. UPREGULATED GENES

Focus genes Interacting genes Score Top functions

1 ATF3, CXCL2, DUSP5, GDF15, IFI6, IFI27, 
IFIH1, IFITM1, IRF7, IRF9, KRT34, OAS1, 
OAS3 (includes EG:4940), OASL, PARP9, 
RELB, STAT1, TNF, TNFAIP3

Cyclooxygenase, IFN Beta, Ifn gamma, IL1/IL6/
TNF, Interferon alpha, Interferon beta, IRF, 
ISGF3, LDL, MHC Class I, NF-κB, NfkB-RelA, 
SAA@, Sod, Stat1-Stat2, Tlr

44 organismal injury and abnormalities, 
gene expression, immune response

2 CXCL1, CXCL3, DDIT3, DKK1, EREG, 
OSL1, IL8, L11, IL1A, PHLDA1, PTGS2, 
PPP1R15A (includes EG:23645)

Akt, ALP, Ap1, Cbp/p300, Creb, ERK, hCG, 
Hsp27, Hsp90, IKK, IL1, JAK, MAP2K1/2, Nos, 
P38 MAPK, Pdgf, PDGF BB, PI3K, Pkc(s), PLC, 
STAT, Tgf beta, Vegf

25 cellular growth and proliferation, 
cellular movement, hematological 
system function

3 BIRC3, ETV5, GADD45A, IL6, RRAD, STC2 ABLIM, ADCY, CAP2, Ck2, Caspase, 
Cytochrome C, FSH, DYRK3, Histone h3, 
Hsp70, IL12, IL1/IL6/TNF, IL1F8, IL1F9, Insulin, 
Jnk, Mapk, Nfat, NFkB, Pka, Proteasome, Rac, 
Ras, RNA polymerase II, STAT5a/b, UBR2, 
Vacuolar H+ ATPase, ZNF274, ZNF675

10 infectious disease, cell cycle, cancer

B. DOWNREGULATED GENES

Focus genes Interacting genes Score Top functions

1 AQP5, EGR1, FOS, KRT19, LMO1, NFE2, 
TNF

ADCYAP1, AKR1B10, ARF4, ASC2, BARX2, 
BPI, CCL9, COBRA1, CXCL16, DGCR6, EMB, 
FOXF1, GFPT2, HMBS, IL1/IL6/TNF, IL1F9, 
JUN, LOC729687, LTBP2, MFHAS1, NFkB, 
RFTN1, SFI1, SLC7A1, TNIP3, TRAFD1, 
Vacuolar H+ ATPase, WNT10A

17 gene expression, cell cycle, cellular 
development

Table 5: The highest scoring networks after NASP siRNA treatment (upregulated genes)

Focus genes Interacting genes Score Top functions

1 ARL5A, E2F8, GSR, HMGB2, NAP1L5, 
OGG1, PSIP1, RBM17, RDM1, TMEFF2, 
TMSL8, UBE2S

APOBEC1, ERBB4, Erbb4 dimer, ERBB4 ligand, 
ESR2, HCFC1, HINT1 (includes EG:3094), 
IGH@, KAT5, KPNA2, MAD2L1BP, MAGEH1, 
NRG3, NRG4, POLE2, RAG1, RCHY1, 
TBXAS1, TP53, UBE2E3, UBE2V1, WRN 
(includes EG:7486), WWOX

25 DNA replication, recombination, and 
repair, cellular development, connective 
tissue disorders

2 CALB1, CGA, F2RL1, FST, FSTL1, 
GNG2, SAA1, SYTL5, TNFRSF11B, 
ZBED2

AKR1C14, ARHGAP22, ARHGEF5, ATP9A, 
C5ORF23, CENPI, ERK, FJX1, FSH, GK7P, 
hCG, IL2, LOC81691, LOC652955, MARCH3, 
NFkB, MRPS6, PI4K2A, RAB27A, REGL, 
STEAP1, Tgf beta, TP53I11, ZFP386, ZNF808

20 reproductive system disease, respiratory 
disease, immune response

3 TES, CRYAB, HAPLN1, KIF5C, MFAP5, 
PDGFRB, PI4K2B, PNMA2, RASSF8, 
CCDC5

AASS, Abl1/2, Cadherin (E, N, P, VE), 
CAPRIN1, CDKN2A, CNN2, CTNNB1, DLL3, 
FRMD6, GLRX2, hydrogen peroxide, KIFC1, 
KLC3, KRT1, LSR, MLXIP, NOTCH1, PMEPA1, 
PXN, SRC, SRFBP1, TAX1BP3, TGFB1, TOB2, 
YWHAG

20 cancer, cell death, cell cycle
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NASP inhibition
Distinct networks were assembled with up-regulated
genes after NASP siRNA treatment (table 5). The highest
scoring network (table 5, network #1) presents E2F8 inter-
acting with TP53. E2F8, which is in the family of E2F tran-
scription factors, is essential for orchestrating expression
of genes required for cell cycle progression and prolifera-
tion [31]. In the assembled network E2F8 interacts with
tumor protein p53 [32], which wasn't found as a focus
gene in this study, but was added during network assem-
blage as an interacting gene. Protein p53 regulates target
genes that induce cell cycle arrest, apoptosis, senescence,
DNA repair and is postulated to function as a tumor sup-
pressor [33]. Multiple focus genes TMSL8, OGG1,
HMGB2, GSP, ARL5A, which were reported to be acted
upon by p53 [34-39], were found to be up-regulated in
this study. One of them, NAP1 (nucleosome assembly
protein1) plays a role in chromatin maintenance by facil-
itating core histone exchange (by regulating the concen-
tration of free histones) as well as nucleosome assembly
and disassembly [40].

Network #2 (table 5) of genes up-regulated after siRNA
treatment was assembled with the "hub" gene products
FSH (follicle stimulating hormone), FST (follistatin),
NFκB, hCG (human chorionic gonadotropin) and focus
gene products TNFRSF11B, SYTL5, ZBED2, FSTL1, CALB1,
GNG2, SAA1, F2RL1. Urbanek et al. [41] studied 37 can-
didate genes for linkage and association with polycystic
ovary syndrome (PCOS) or hyperandrogenemia and
found evidence for linkage between PCOS and follistatin.

Follistatin has been reported as a modulator of gonadal
tumor progression in inhibin deficient mice [42].

Network #3 (table 5) of up-regulated genes after siRNA
treatment identified TGFB1 as a core molecule indirectly
affiliated with interacting proteins. TGFB is a multifunc-
tional peptide that controls proliferation, differentiation,
inducing transformation, and other functions in many
cell types [43].

After siRNA treatment 71 down-regulated genes were
almost evenly assembled into four networks of interacting
proteins (table 6). The network with the highest score
(table 6, network #1) included: HOXA10, FGF2, SRF,
ITGA5, and ITGB3. HOXA10 is a DNA-binding transcrip-
tion factor that may regulate gene expression, morpho-
genesis, and differentiation. More specifically, it may
function in fertility and embryo viability [44]. FGF2
(fibroblast growth factor) and SRF (c-fos serum response
element-binding transcription factor) participate in cell
cycle regulation, apoptosis, cell growth and differentia-
tion [45]. Interaction of SRF with other proteins, such as
steroid hormone receptors, may contribute to regulation
of muscle growth [46].

Network #2 of down regulated genes (table 6) includes
TNF as a core protein along with several interacting pro-
teins. Overlap of this network with another assembled
network (table 6, network #4) revealed TRAF6 (TNF
receptor associated factor), which mediates signal trans-
duction from members of the TNF receptor superfamily

Table 6: The highest scoring networks after NASP siRNA treatment (downregulated genes)

Focus genes Interacting genes Score Top functions

1 ACTA1, ACTA2 (includes EG:59), ARL1, 
ATP2B4, CNN1, DCBLD2, FGF2, HOXA10, 
ITGA5, ITGB3, MAP2K1, SEC13, SHOC2, SRF, 
TNC

Actin, Akt, Alpha actin, ERK, ERK1/2, FSH, IKK, 
Integrin, Jnk, Mapk, Mek, Pdgf, PDGF BB, PI3K, 
Pkc(s), PLC gamma, Pld, Ras, Tgf beta, Vegf

31 cellular assembly and organization, 
cell-to-cell signaling and 
interaction, viral infection

2 CDCP1, CROT, DYX1C1, ERLIN2, GCOM1, 
GLS, GPR137B, HIST2H2AA3, PPM1K, 
SLAIN2, SPOCD1, TTC39A, TUBB3, 
ZDHHC2

beta-estradiol, F2, HSPA1A, HSPA1L, IFRD2, 
KYNU, MAPK11 PREDICTED, VCP, MFHAS1, 
MMD, NFRKB, NOS3, PGLYRP1, SAMD4A, 
SLC16A5, SPR, TNF, TXN2, YWHAZ, 
ZDHHC8, ZNF267

28 cardiovascular system 
development and function, tissue 
morphology, organismal 
development

3 ACADL, ACADSB, CPEB3, ENTPD7, EVI5, 
CFI, CPA4, TLR3 GATM, LIPH GBP3, RFK, 
PPP1R9A, OSTM1

9330129D05RIK, ACAD8, ACAD9, ACAD10, 
ACAD11, Acyl-CoA dehydrogenase, C3, 
CDKN2A, CFHR3, CFHR5, F Actin, Glycogen 
synthase, GTP, heparin, IL4, IWS1, NFkB, NFYB, 
Pka, PLK1, RAB1A

28 lipid metabolism, molecular 
transport, small molecule 
biochemistry

4 DCP2, FABP5, GLT8D3, HIST1H1C, 
HIST1H2BK, NASP, NUPL1, PCDH7, 
PPP1R3B, SEPX1, TM9SF4, UBE2N

ANXA9, DHX8, ERLIN1, FASTKD2, HNF4A, 
IL1B, MGEA5, MRTO4, NAT13, NUDT11, 
NUP62, OTUD7B, PHPT1, PSMC3, REXO2, 
SEC11A, MEM176B, TMEM189-UBE2V1, 
TRAF6, TRAFD1, Ube2n-Ube2v1, UHRF1, 
WRNIP1

23 cell signaling, cancer, cellular 
compromise
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Fragment of molecular network of down-regulated genes in the result of NASP depletionFigure 3
Fragment of molecular network of down-regulated genes in the result of NASP depletion. Shaded shapes present 
focus genes, clear shapes present interacting genes. Table 6 contains all the genes.
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and interacts with various protein kinases including
IRAK1/IRAK, SRC and PKCzeta [47]. TRAF6 was identified
by mass spectrometry in a large scale immunoprecipita-
tion as an interacting protein with NASP protein, but the
functional correlation between TRAF6 and NASP is
unknown [48]. TRAF6 mediates signals from TNF apop-
totic pathways, as well as other pathways (IL1, NF-κB). It
is not clear if NASP regulates TRAF6, or TRAF6 transfers a
signal to NASP. The focus genes interacting with NASP
(table 6, network #4; figure 3) include HIST1H1C [1] and
HIST1H2BK [49], which implies that these histone gene
products may be regulated in concert with NASP. None of
the focus genes were found to be a hub in network #3
(table 6), therefore it was not investigated further.

Canonical pathway analysis
NASP overexpression
We found that each treatment resulted in activation/inhi-
bition of specific signaling pathways. A list of the signifi-
cant genes present in canonical pathways after different
treatments is presented in Additional file 5, Additional file
6, Additional file 7 and Additional file 8.

The highest activation level after NASP overexpression
(figure 4A) was detected in pathways related to antiviral
responses, activation of IRF (interferon activation factor),
recognition of bacteria and viruses, interferon signaling
and other interrelated pathways. Some pathways were
inhibited by NASP overexpression (figure 4B). The signif-
icance of all top 6 canonical pathways in this category
barely exceeded the threshold level and all of them were
selected as a result of down-regulation of only one gene,
FOS, which is an important transcription regulator of cell
proliferation, differentiation, and transformation [50].
The inhibition of a single gene makes understanding its
role in any of those pathways difficult.

NASP inhibition
A similar result was observed with analysis of activated
signaling pathways after siRNA treatment (figure 4C).
Only one pathway reached significance above the thresh-
old level, the remaining five canonical pathways were
below the threshold level. After siRNA treatment (figure
4D) several signaling pathways were inhibited due to
down-regulation of growth factor FGF2, transmembrane
receptors ITGB3 and ITGA5 and other molecules such as
ATCA1 and ATCA2. The two highest scores had canonical
pathways related to caveolar-mediated (p-value 1.85 × 10-

4, 4 out of 81 molecules were associated with a given path-
way) and clathrin-mediated (p-value 2.39 × 10-4, 5/165)
endocytosis. Selection of these pathways was based on
down-regulation of both α- and β- integrins (ITGA5 and
ITGB3) which serve as transmembrane receptors. Activa-
tion of α- and β-integrins by appropriate ECM proteins
causes the activation of ERK/MAPK-mediated transcrip-

tion, which eventually leads to cell proliferation [51].
Mitogen activated protein kinase MAP2K1 (synonym
MEK1/2), an important link in both those pathways, was
found to be down regulated and it makes NASP's effect on
this pathway plausible. Down regulation of ACTA1 and
ACTA2 (actin α-1 and actin α-2) along with MAP2K1, α-
integrin, and FGF2 (fibroblast growth factor 2) indicates a
high probability that there is an effect on the actin
cytoskeleton signaling pathway (p-value 8.17 × 10-4, 5/
222), which leads to actin reorganization and plays an
important role in cell motility, cytokinesis and phagocyto-
sis [52]. Decreased expression of kinase MAP2K1 and
transcription factor SRF implies an effect on EGF (epider-
mal growth factor) signaling pathways (p-value 1.25 × 10-

2, 2/47), which regulate cell growth and differentiation
[53].

Conclusion
This study has demonstrated that NASP, a linker histone
chaperone, belongs to a network of genes and gene func-
tions that are critical for cell survival. We have confirmed
the previously reported interactions between NASP and
HSP90, HSP70, histone H1, histone H3, and TRAF6.
Indeed, based on the number of critical pathways affected
by the overexpression or inhibition of NASP expression,
NASP may play a much wider role in gene expression
events that require the participation of histones. Signifi-
cantly this study found that during overexpression the
network with the highest score of up-regulated genes
included gene products associated with TNF and during
inhibition network #2 of down regulated genes also
included TNF. TNF receptor associated factor, TRAF6, has
already been identified as interacting with NASP. There-
fore these two identified networks may explain how the
expression of NASP is modulated during cell proliferation
and differentiation.

Of interest to reproductive biology, this study found a sig-
nificant association of NASP with the FSH and follistatin
gene pathways that are up-regulated after NASP siRNA
treatment. This may have implications for the control of
NASP expression during granulosa cell and endometrial
cell proliferation.

Most of the pathways found in this study have not been
previously reported to be connected to expression levels
of NASP and demonstrate a rather complicated picture of
changed gene expression in HeLa cells after NASP expres-
sion was increased or decreased. Gene ontology and pro-
tein network analysis identified general biological
processes as well as individual genes/gene products and
possible interaction networks. Some of these processes
may relate to HeLa-type cells in tissue culture in which cell
adhesion and migration are critical, while others may
only be relevant in neoplasia. We found signaling path-
Page 13 of 17
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2009, 7:45 http://www.rbej.com/content/7/1/45

Page 14 of 17
(page number not for citation purposes)

Top canonical pathways affected byFigure 4
Top canonical pathways affected by. A. Up-regulated genes after NASP overexpression. B. Down-regulated genes after 
NASP overexpression. C. Up-regulated genes after NASP depletion. D. Down-regulated genes after NASP depletion. Bars rep-
resent -log (p-value) for disproportionate representation of affected genes in the selected pathway, yellow line represents the 
ratio of affected genes to the total number of genes in a pathway. Threshold (red line) denotes the p = 0.05 level.
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ways which were affected as a result of changed NASP
expression and despite some overlap each reactive
response was associated with a unique gene signature. The
results of this study have elucidated the changes that
emerge from increased and decreased NASP expression
and will help our understanding of the molecular mecha-
nisms involved in NASP function. Confirmation of
NASP's role in regulating the cell cycle may contribute to
the development of new pharmaceutical approaches to
control the relevant pathological conditions.
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