49 research outputs found

    Soil Moisture Retrieval During a Corn Growth Cycle using L-band (1.6 GHz) Radar Observations

    Get PDF
    New opportunities for large-scale soil moisture monitoring will emerge with the launch of two low frequency (L-band 1.4 GHz) radiometers: the Aquarius mission in 2009 and the Soil Moisture and Ocean Salinity (SMOS) mission in 2008. Soil moisture is an important land surface variable affecting water and heat exchanges between atmosphere, land surface and deeper ground water reservoirs. The data products from these sensors provide valuable information in a range of climate and hydrologic applications (e.g., nume~cal weather prediction, drought monitoring, flood forecasting, water resources management, etc.). This paper describes a unique data set that was collected during a field campaign at OPE^ (Optimizing Production Inputs for Economic and Environmental Enhancements) site in Beltsville, Maryland throughout the eompj2ete corn growing in 2002. This investigation describes a simple methodology to correct active microwave observations for vegetation effects, which could potentially be implemented in a global soil moisture monitoring algorithm. The methodology has been applied to radar observation collected during the entire corn growth season and validation against ground measurements showed that the top 5-cm soil moisture can be retrieved with an accuracy up to 0.033 [cu cm/cu cm] depending on the sensing configuration

    Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Get PDF
    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented

    SMAP Mission Status, New Products, and Extended-Phase Goals

    Get PDF
    NASA's Soil Moisture Active Passive (SMAP) Project now has completed its prime-phase (three years) mission and has entered a new five-year extended phase. The global L-band radiometry from SMAP has enabled diverse scientific investigations in water, energy and carbon cycle research, terrestrial ecology and ocean science. These include eliciting the role of soil moisture control on the evaporation regime and vegetation gross primary productivity, observing soil-vegetation continuum water relations, analysis of flood and droughts, climate modeling and weather prediction, detecting ocean high-winds during tropical storms, and observing fresh-water outflow in coastal oceans. This paper highlights the recent enhancements to the SMAP suite of science products (from instrument level-1 to geophysical retrievals level-2 and level-3)

    Development of a Coherent Bistatic Vegetation Model for Signal of Opportunity Applications at VHF UHF-Bands

    Get PDF
    A coherent bistatic vegetation scattering model, based on a Monte Carlo simulation, is being developed to simulate polarimetric bi-static reflectometry at VHF/UHF-bands (240-270 MHz). The model is aimed to assess the value of geostationary satellite signals of opportunity to enable estimation of the Earth's biomass and root-zone soil moisture. An expression for bistatic scattering from a vegetation canopy is derived for the practical case of a ground-based/low altitude platforms with passive receivers overlooking vegetation. Using analytical wave theory in conjunction with distorted Born approximation (DBA), the transmit and receive antennas effects (i.e., polarization, orientation, height, etc.) are explicitly accounted for. Both the coherency nature of the model (joint phase and amplitude information) and the explicit account of system parameters (antenna, altitude, polarization, etc) enable one to perform various beamforming techniques to evaluate realistic deployment configurations. In this paper, several test scenarios will be presented and the results will be evaluated for feasibility for future biomass and root-zone soil moisture application using geostationary communication satellite signals of opportunity at low frequencies

    L Band Brightness Temperature Observations Over a Corn Canopy During the Entire Growth Cycle

    Get PDF
    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (T(sub B)) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. During the period from May 22, 2002 to August 30, 2002 a range of vegetation water content (W) of 0.0 to 4.3 kg/square m, ten days of radiometer and ground measurements were available. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using T(sub B) measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized T(sub B) are employed to invert the H-polarized transmissivity (gamma-h) for the monitored corn growing season

    Partitioning Evapotranspiration in Semiarid Grassland and Shrubland Ecosystems Using Diurnal Surface Temperature Variation

    Get PDF
    The encroachment of woody plants in grasslands across the Western U.S. will affect soil water availability by altering the contributions of evaporation (E) and transpiration (T) to total evapotranspiration (ET). To study this phenomenon, a network of flux stations is in place to measure ET in grass- and shrub-dominated ecosystems throughout the Western U.S. A method is described and tested here to partition the daily measurements of ET into E and T based on diurnal surface temperature variations of the soil and standard energy balance theory. The difference between the mid-afternoon and pre-dawn soil surface temperature, termed Apparent Thermal Inertia (I(sub A)), was used to identify days when E was negligible, and thus, ET=T. For other days, a three-step procedure based on energy balance equations was used to estimate Qe contributions of daily E and T to total daily ET. The method was tested at Walnut Gulch Experimental Watershed in southeast Arizona based on Bowen ratio estimates of ET and continuous measurements of surface temperature with an infrared thermometer (IRT) from 2004- 2005, and a second dataset of Bowen ratio, IRT and stem-flow gage measurements in 2003. Results showed that reasonable estimates of daily T were obtained for a multi-year period with ease of operation and minimal cost. With known season-long daily T, E and ET, it is possible to determine the soil water availability associated with grass- and shrub-dominated sites and better understand the hydrologic impact of regional woody plant encroachment

    The Soil Moisture Active Passive Mission (SMAP) Science Data Products: Results of Testing with Field Experiment and Algorithm Testbed Simulation Environment Data

    Get PDF
    Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagemen

    Emergent Imaging and Geospatial Technologies for Soil Investigations

    Get PDF
    Soil survey investigations and inventories form the scientific basis for a wide spectrum of agronomic and environmental management programs. Soil data and information help formulate resource conservation policies of federal, state, and local governments that seek to sustain our agricultural production system while enhancing environmental quality on both public and private lands. The dual challenges of increasing agricultural production and ensuring environmental integrity require electronically available soil inventory data with both spatial and attribute quality. Meeting this societal need in part depends on development and evaluation of new methods for updating and maintaining soil inventories for sophisticated applications, and implementing an effective framework to conceptualize and communicate tacit knowledge from soil scientists to numerous stakeholders
    corecore