14 research outputs found

    A combined Fourier transform infrared and Cr K-edge X-ray absorption near-edge structure spectroscopy study of the substitution and diffusion of H in Cr-doped forsterite

    Get PDF
    International audienceSingle crystals of synthetic Cr-doped forsterite (Cr:Mg2SiO4) containing both Cr3+ and Cr4+ were partially hydroxylated in piston-cylinder apparatuses at 750-1300 degrees C and pressures from 0.5 to 2.5 GPa, with P(H2O) approximate to P-total. The oxygen fugacity (fO(2)) was buffered by graphite-water, Ni-NiO, Re-ReO2, Fe2O3-Fe3O4 or Ag-Ag2O, and the silica activity (a SiO2) was buffered by powdered forsterite plus either enstatite (Mg2Si2O6), periclase (MgO) or zircon-baddeleyite (ZrSiO4-ZrO2). Profiles of OH content versus distance from the crystal edge were determined using Fourier transform infrared (FTIR) spectroscopy, and profiles of the oxidation state and coordination geometry of Cr were obtained, at the same positions, using K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The techniques are complementary - FTIR spectroscopy images the concentration and nature of O-H bonds, where Cr K-edge XANES spectroscopy shows the effect of the added H on the speciation of Cr already present in the lattice. Profiles of defect-specific absorbance derived from FTIR spectra were fitted to solutions of Fick's second law to derive diffusion coefficients, which yield the Arrhenius relationship for H diffusion in forsterite: log(10)(D) over tilde ([001]) = -2.5 +/- 0.6 + -(224 +/- 12 + 4.0 +/- 2.0 P)/2.303 RT , where (D) over tilde is the measured diffusion coefficient in m(2) s(-1), valid for diffusion parallel to [001] and calibrated between 1000 and 750 degrees C, P and T are in GPa and K, and R is 0.008314 kJK(-1) mol(-1). Diffusivity parallel to [100] is around 1 order of magnitude lower. This is consistent with previous determinations of H diffusion associated with M-site vacancies. The FTIR spectra represent a variety of Cr-bearing hydrous defects, along with defects associated with the pure Mg-Si-O-H system. It is proposed that all of the defects can form by interaction between the dry lattice, including Cr3+ and Cr4+, and fully hydroxylated M-site vacancies. The initial diffusive wave of hydroxylation is associated with neither reduction nor oxidation of Cr but with Cr4+ changing from tetrahedral to octahedral coordination. Superimposed on the H diffusion and concomitant change in Cr4+ site occupancy, but at a slower rate, producing shorter profiles, is reduction of Cr4+ to Cr3+ and potentially of Cr4+ and Cr3+ to Cr2+. In addition, by comparing FTIR data to trace element contents measured by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), constraints can be placed on absorption coefficients used for converting absorbance to H2O contents - our data support either wavenumber- or defect-dependent values of absorption coefficients. We estimate absorption coefficients of between 60 200 and 68 200 L mol(-1) cm(-1) for OH- associated with octahedral Cr3+ and an M-site vacancy and 18 700 to 24 900 L mol(-1) cm(-1) for two OH- associated with octahedrally coordinated Cr4+ and a Si vacancy (i.e. a clinohumite-type point defect)

    Analysis of 60 elements in 616 ocean floor basaltic glasses

    No full text
    The abundances of 60 elements in 616 Ocean Floor Basaltic (OFB) glasses from the Abyssal Volcanic Glass Data File (AVGDF) of the Smithsonian Institution have been determined by laser-ablation (LA)-ICP-MS and electron microprobe analysis (EMPA). The elements analyzed include all 28 of the refractory lithophile elements, which provide the framework for establishing the geochemical behavior and source abundances of volatile, chalcophile and siderophile elements. In addition to the traditionally analyzed elements (rare earth elements (REE), high field strength elements (HFSE), large ion lithophile elements (LILE) and first row transition elements (FRTE)), we report analyses for lesser-analyzed elements (Li, Be, Ga, Ge, As, Se, Mo, Ag, Cd, In, Sn, Sb, W, Tl and Bi). The precision of the method for most elements is between 2 and 4%, one standard deviation, although ratios of elements determined simultaneously are more precise (e.g., REE, Zr/Hf). Subsets of 329 glasses were analyzed by electron microprobe for S and 154 glasses for Cl. The results define a representative trace element geochemistry of OFB, against which local variations resulting from differences in basalt petrogenesis in a range of tectonic settings or different styles of magmatic differentiation may be compared

    Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300°C with some geochemical implications

    No full text
    Lattice diffusion coefficients have been determined for 19 elements (Li, Be, Na, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Eu, Gd, Lu and Hf) in a single crystal of San Carlos olivine as a function of crystallographic orientation, at 1,300°C, 1 bar and fO2 = 10^−8.3 bars, by equilibration with a synthetic silicate melt. Results for Li, Na, V, Cr, Fe and Zn are from diffusion of these elements out of the olivine, starting from their indigenous concentrations; those for all other elements are from diffusion into the olivine, from the silicate melt reservoir. Our 25-day experiment produced diffusion profiles 50 to > 700 ÎŒm in length, which are sufficiently long that precise analyses could be achieved by scanning laser ablation inductively coupled plasma mass spectrometry, even at concentration levels well below 1 ÎŒg g^−1. For the divalent cations Ca, Mn, Fe and Ni, profiles were also obtained by electron microprobe analysis. The results of the two methods agree well with each other, and are consistent with divalent cation diffusion coefficients previously determined using different experimental methodologies. Olivine/melt partition coefficients retrieved from the data are also consistent with other published partitioning data, indicating that element incorporation and transport in olivine in our experiment occurred via mechanisms appropriate to natural conditions. Most of the examined trace elements diffuse through olivine at similar rates to the major octahedral cations Fe and Mg, showing that cation charge and radius have little direct influence on diffusion rates. Aluminium and P remain low and constant in the olivine, implying negligible transport at our analytical scale, hence Al and P diffusion rates that are at least two orders of magnitude slower than the other cations studied here. All determined element diffusivities are anisotropic, with diffusion fastest along the [001] axis, except Y and the REEs, which diffuse isotropically. The results suggest that element diffusivity in olivine is largely controlled by cation site preference, charge balance mechanisms and point-defect concentrations. Elements that are present on multiple cation sites in olivine (e.g. Be and Ti) and trivalent elements that are charge-balanced by octahedral site vacancies tend to diffuse at relatively fast rates

    Zinc isotope composition of the Earth and its behaviour during planetary accretion

    Get PDF
    International audienceThe terrestrial planets are depleted in volatile elements with respect to chondritic meteorites, their possible building blocks. However, the timing, extent and origin of volatile depletion is debated. Zinc is a moderately volatile element (MVE), whose stable isotopic composition can distinguish when and where this depletion took place. Here, we report data for 40 ultramafic rocks comprising pristine upper mantle peridotites from the Balmuccia orogenic lherzolite massif and Archean komatiites that together define the Zn isotope composition of the Earth's primitive mantle. Peridotites and komatiites are shown to have indistinguishable Zn isotopic compositions of delta Zn-66 = + 0.16 +/- 0.06% (2SD), (with delta Zn-66 the per mille deviation of Zn-66/Zn-64 from the JMC-Lyon standard), implying a constant Zn isotope composition for the silicate Earth since 3.5 Ga. After accounting for Zn sequestration during core formation, the Earth falls on the volatile-depleted end of a carbonaceous chondrite array in delta Zn-66-Zn/Mg space, implying Earth avoided modification of its MVE budgets during late accretion (e.g. during a giant impact), in contrast to the Moon. The Moon deviates from the chondritic array in a manner consistent with evaporative loss of Zn, where its delta Zn-66 co-varies with Mn/Na, implying post-nebular volatile loss is more pronounced on smaller bodies. Should the giant impact deliver the Earth's volatile complement of Pb and Ag, it cannot account for the budget of lithophile MVEs (e.g. Zn, Rb, Mn), whose abundances reflect those of Earth's nebular building blocks. The Earth initially accreted from material that experienced chemical- and mass-dependent isotopic fractionation akin to carbonaceous chondrites, though volatile depletion was more pronounced on Earth

    Beryllium diffusion in olivine: A new tool to investigate timescales of magmatic processes

    No full text
    The diffusion of beryllium (Be) in pure synthetic forsterite (fo₁₀₀) and San Carlos olivine (fo₉₀) was studied between 950–1475◩C at atmospheric pressure, as a function of silica activity (aSiO₂), crystallographic orientation, oxygen fugacity (fO₂, for diffusion in San Carlos olivine) and water fugacity (fH₂O, at 1.15 GPa pressure (P)). The diffusivity of Be in olivine is faster than that of MgÂČ+or FeÂČ+but slower than that of Hâș, and appears to be insensitive to aSiO₂, fH₂O and P, but is highly anisotropic, with diffusivities described by: [001]: log D₀ =−5.82 (±0.15), Eₐ = 227.6 (±4.1) kJ mol⁻ Âč; [010]: log D₀ =−4.64 (±0.38), Eₐ = 285.8 (±11.6) kJ mol⁻Âč; [100]: log D₀ =−4.20 (±0.27), Eₐ = 326.1 (±7.9) kJ mol⁻ Âč. Diffusion of Be2+in natural San Carlos olivine was determined at 1160 to 1350◩C and was found to be similar to that in forsterite. The exception was one experiment in natural olivine in relatively oxidising conditions, where diffusion was slightly faster than its lower fO₂ or pure forsterite counterparts. The equilibrium solubility of Be in forsterite in equilibrium with BeO (bromellite) and MgO (periclase) is lower than when in equilibrium with BeO and MgfO₂SifO₂O₆((proto)enstatite). This shows that BeÂČ+substitutes into olivine forming a defect with the stoichiometry Be₂SiO₄. The sensitivity of Be diffusion in olivine to only temperature and crystal orientation means that only these two factors need to be known to extract timescales from natural diffusion profiles (our preliminary experiments show that the dependence of diffusion on fO2is minor or negligible in geologically relevant conditions). This represents a considerable advantage over using diffusion profiles of other cations (e.g., FeÂČ+–MgÂČ+, NiÂČ+or CaÂČ+), where all of the above mentioned variables must be constrained before accurate timescale determinations can be made. Two examples of the potential for using Be diffusion profiles to determine timescales in natural olivine xenocrysts are presented.Funding came from the Australian Research Council (grant FL130100066 to HO’N)

    The timescales of magma evolution at mid-ocean ridges

    No full text
    Highlights ‱ Synthesis of timescales of magmatic processes at spreading centres. ‱ Compilation of drilled MORB glass compositions, chemical stratigraphy of the oceanic crust. ‱ No chemical difference between MORB sampled from active ridges or by drilling. ‱ Chemical variations on timescales < 1 ka reflect changes in melt recharge relative to fractionation. ‱ Changes in the composition of melt entering crust occur over timescales of 10 to 100 ka. Abstract Oceanic crust is continuously created at mid-ocean ridges by decompression melting of the upper mantle as it upwells due to plate separation. Decades of research on active spreading ridges have led to a growing understanding of the complex magmatic, tectonic and hydrothermal processes linked to the formation of new oceanic igneous crust. However, less is known about the timescales of magmatic processes at mid-ocean ridges, including melting in and melt extraction from the mantle, fractional crystallisation, crustal assimilation and/or magma mixing. In this paper, we review the timescales of magmatic processes by integrating radiometric dating, chemical and petrological observations of mid-ocean ridge basalts (MORBs) and geophysical models. These different lines of evidence suggest that melt extraction and migration, and crystallisation and mixing processes occur over timescales of 1 to 10,000 a. High-resolution geochemical stratigraphic profiles of the oceanic crust using drill-core samples further show that at fast-spreading ridges, adjacent flow units may differ in age by only a few 100 a. We use existing chemical data and new major- and trace-element analyses of fresh MORB glasses from drill-cores in ancient Atlantic and Pacific crust, together with model stratigraphic ages to investigate how lava chemistry changes over 10 to 100 ka periods, the timescale of crustal accretion at spreading ridges which is recorded in the basalt stratigraphy in drilled sections through the oceanic crust. We show that drilled MORBs have compositions that are similar to those of young MORB glasses dredged from active spreading ridges (lavas that will eventually be preserved in the lowermost part of the extrusive section covered by younger flows), showing that the dredged samples are indeed representative of the bulk oceanic crust. Model stratigraphic ages calculated for individual flows in boreholes, together with the geochemical stratigraphy of the drilled sections, show that at fast-spreading ridges, magma compositions vary over < 100 to 1000 a, likely due to variations in the relative rates of crystallisation and melt recharge. However, on longer timescales of 10 to 100 ka, variations in the composition of the primitive melt feeding the ridge lead to chemical variations in the erupted lavas, likely as a function of thermal and/or chemical heterogeneity of the mantle source. The further understanding of these temporal variations in magma composition, especially at shorter timescales of less than a few centuries, is a promising area for future research

    Solubility of Os and Ir in sulfide melt: Implications for Re/Os fractionation during mantle melting

    No full text
    Although both rhenium (Re) and osmium (Os) are highly siderophile elements (HSE), they show contrasting geochemical behaviors during partial melting of the mantle - Re is mildly incompatible whereas Os appears to be compatible. This fundamental difference, unique among commonly used isotopic chronometers, causes large variations of Re/Os in oceanic basalts. However, which mantle phases control the geochemical behavior of these elements during partial melting is controversial. Sulfide is typically regarded as a major host for these elements, but recent studies have shown that silicate phases and spinel may also play a role. Here we report the results of an experimental study on the solubilities of Os and Ir in sulfide melts (or mattes) over a large range of oxygen (fO 2) and sulfur (fS 2) fugacities at 1300 °C. Our experiments indicate that the solubilities of Os and Ir in mattes increase with increasing fS 2, with both Os and Ir dissolving as trivalent species at high fS 2 and metallic species at low fS 2. The effect of fO 2 on Os and Ir solubilities appears to be related to oxygen being dissolved into the matte at more oxidizing conditions. Our results coupled with solubility data for Os and Ir in silicate melts have enabled matte/silicate melt partition coefficients for these elements (D i matte/sil) to be calculated. Assuming a relative oxygen fugacity equal to the quartz-fayalite-magnetite redox equilibrium (i.e. QFM) and a sulfur fugacity of 10 -0.5 bar, calculated D Os matte/sil is ~10 4 and D Ir matte/sil is ~10 6. The low solubilities of Os and Ir in silicate melts, coupled with their high matte/silicate melt partition coefficients, suggest that Os and Ir in fertile mantle with ~200 ppm S are held in the mantle matte phase. However, we show that the empirical range of Re/Os in mid-ocean ridge basalts (MORB) can only be reproduced when sulfide is exhausted by high degrees of partial melting, leaving Os-Ir-rich metal alloy in the mantle residue
    corecore