545 research outputs found

    SUPPLY AND DEMAND RISKS IN LABORATORY FORWARD AND SPOT MARKETS: IMPLICATIONS FOR AGRICULTURE

    Get PDF
    Laboratory experimental methods are used to investigate the impacts of supply and/or demand risks on prices, quantities traded, and earnings within forward and spot market institutions. Random demand and/or supply shifts can be as much as 25 percent of the expected equilibrium outcome. Nevertheless, results suggest that the spot or forward trading institution itself has a greater influence on market outcomes than the presence of risk within the trading institutions. Sellers tend to have relatively higher earnings in a spot market than buyers, regardless of the risk. Total surplus, however, generally is greater in a forward market.laboratory markets, forward market, spot market, supply and/or demand risks, Demand and Price Analysis, Marketing,

    SUPPLY AND DEMAND RISKS IN FORWARD AND SPOT MARKETS: IMPLICATIONS FOR AGRICULTURE

    Get PDF
    Laboratory methods are used to investigate the impacts of supply and/or demand risks on prices, quantities traded, and earnings within forward and spot market institutions. Results suggest that the spot or forward trading institution itself has a greater influence on market outcomes than supply/demand risks within the institution.Marketing,

    Multicomponent odd-parity superconductivity in UAu2at high pressure

    Get PDF

    A field induced modulated state in the ferromagnet PrPtAl

    Get PDF
    The theory of quantum order-by-disorder (QOBD) explains the formation of modulated magnetic states at the boundary between ferromagnetism and paramagnetism in zero field. PrPtAl has been argued to provide an archetype for this. Here, we report the phase diagram in magnetic field, applied along both the easy a axis and hard b axis. For field aligned to the b axis, we find that the magnetic transition temperatures are suppressed and at low temperature there is a single modulated fan state, separating an easy a axis ferromagnetic state from a field polarized state. This fan state is well explained with the QOBD theory in the presence of anisotropy and field. Experimental evidence supporting the QOBD explanation is provided by the large increase in the T^{2} coefficient of the resistivity and direct detection of enhanced magnetic fluctuations with inelastic neutron scattering, across the field range spanned by the fan state. This shows that the QOBD mechanism can explain field induced modulated states that persist to very low temperature
    • 

    corecore