6 research outputs found

    Determination of a suitable low-dose abdominopelvic CT protocol using model-based iterative reconstruction through cadaveric study.

    Get PDF
    Introduction: Cadaveric studies provide a means of safely assessing new technologies and optimizing scanning prior to clinical validation. Reducing radiation exposure in a clinical setting can entail incremental dose reductions to avoid missing important clinical findings. The use of cadavers allows assessment of the impact of more substantial dose reductions on image quality. Our aim was to identify a suitable low‐dose abdominopelvic CT protocol for subsequent clinical validation. Methods: Five human cadavers were scanned at one conventional dose and three low‐dose settings. All scans were reconstructed using three different reconstruction algorithms: filtered back projection (FBP), hybrid iterative reconstruction (60% FBP and 40% adaptive statistical iterative reconstruction (ASIR40)), and model‐based iterative reconstruction (MBIR). Two readers rated the image quality both quantitatively and qualitatively. Results: Model‐based iterative reconstruction images had significantly better objective image noise and higher qualitative scores compared with both FBP and ASIR40 images at all dose levels. The greatest absolute noise reduction, between MBIR and FBP, of 34.3 HU (equating to a 68% reduction) was at the lowest dose level. MBIR reduced image noise and improved image quality even in CT images acquired with a mean radiation dose reduction of 62% compared with conventional dose studies reconstructed with ASIR40, with lower levels of objective image noise, superior diagnostic acceptability and contrast resolution, and comparable subjective image noise and streak artefact scores. Conclusion: This cadaveric study demonstrates that MBIR reduces image noise and improves image quality in abdominopelvic CT images acquired with dose reductions of up to 62%

    Age and frailty are independently associated with increased COVID-19 mortality and increased care needs in survivors: results of an international multi-centre study

    No full text
    Introduction: Increased mortality has been demonstrated in older adults with coronavirus disease 2019 (COVID-19), but the effect of frailty has been unclear. Methods: This multi-centre cohort study involved patients aged 18 years and older hospitalised with COVID-19, using routinely collected data. We used Cox regression analysis to assess the impact of age, frailty and delirium on the risk of inpatient mortality, adjusting for sex, illness severity, inflammation and co-morbidities. We used ordinal logistic regression analysis to assess the impact of age, Clinical Frailty Scale (CFS) and delirium on risk of increased care requirements on discharge, adjusting for the same variables. Results: Data from 5,711 patients from 55 hospitals in 12 countries were included (median age 74, interquartile range [IQR] 54–83; 55.2% male). The risk of death increased independently with increasing age (>80 versus 18–49: hazard ratio [HR] 3.57, confidence interval [CI] 2.54–5.02), frailty (CFS 8 versus 1–3: HR 3.03, CI 2.29–4.00) inflammation, renal disease, cardiovascular disease and cancer, but not delirium. Age, frailty (CFS 7 versus 1–3: odds ratio 7.00, CI 5.27–9.32), delirium, dementia and mental health diagnoses were all associated with increased risk of higher care needs on discharge. The likelihood of adverse outcomes increased across all grades of CFS from 4 to 9. Conclusion: Age and frailty are independently associated with adverse outcomes in COVID-19. Risk of increased care needs was also increased in survivors of COVID-19 with frailty or older age.</p
    corecore