9 research outputs found

    Low-resistance Ni-based Schottky diodes on freestanding n-GaN

    Get PDF
    Schottky diodes formed on a low doped (5 x 10(16) cm(-3)) n-type GaN epilayer grown on a n(+) freestanding GaN substrate were studied. The temperature dependent electrical characteristics of Ni contacts on the as-grown material are compared with an aqueous, potassium hydroxide (KOH) treated surface. In both cases the diodes are dominated by thermionic emission in forward bias, with low idealities (1.04 at room temperature) which decrease with increasing temperature, reaching 1.03 at 413 K. The Schottky barrier height is 0.79 +/- 0.05 eV for the as-grown surface compared with 0.85 +/- 0.05 eV for the KOH treated surface at room temperature. This is consistent with an inhomogeneous barrier distribution. The specific on-state resistance of the diodes is 0.57 m Omega cm(2) The KOH treatment reduces the room temperature reverse leakage current density at -30 V to 1 x 10(-5) A cm(-2) compared to 6 x 10(-2) A cm(-2) for the as-grown samples. (C) 2007 American Institute of Physics. (DOI:10.1063/1.2799739

    InAlAs solar cell on a GaAs substrate employing a graded InxGa1-xAs-InP metamorphic buffer layer

    Get PDF
    Single junction In0.52Al0.48As solar cells have been grown on a (100) GaAs substrate by employing a 1 mu m thick compositionally graded InxGa1-xAs/InP metamorphic buffer layer to accommodate the 3.9% mismatch. Cells processed from the 0.8 mu m thick InAlAs layers had photovoltaic conversion efficiency of 5% with an open circuit voltage of 0.72 V, short-circuit current density of 9.3 mA/cm(2), and a fill factor of 74.5% under standard air mass 1.5 illumination. The threading dislocation density was estimated to be 3 x 10(8) cm(-2). (C) 2013 American Institute of Physics. (http://dx.doi.org/10.1063/1.4789521

    Optical properties of nanocrystalline ZnO thin films grown using pulsed laser deposition

    Get PDF
    Raman spectroscopy, x-ray diffractometry, atomic force microscopy, photoluminescence spectroscopy and reflectance spectroscopy have been used to characterize ZnO thin films grown by pulsed laser deposition as a function of the post-growth annealing temperature. Raman results show enhancement and broadening of certain Raman features which correlate with changes in the widths of the x-ray diffraction peaks for samples with varying grain size in the 50-100 nm range. These data suggest that electric fields, arising from charge trapping at grain boundaries, in conjunction with localised and surface phonon modes, are the cause of the intensity enhancement and asymmetry of the Raman features. Band-edge photoluminescence and reflectance spectra also altered considerably with increases in grain size, showing clearly observable excitonic structure in the reflectance spectra. An analysis using a deformation potential Hamiltonian demonstrates that the experimental exciton energies are not explicable solely in terms of sample strain and give additional evidence for electric fields in the samples due to charge trapping at grain boundaries. This is supported by theoretical estimates of the exciton energy perturbation due to electric fields and also by the behaviour of the green band in the samples. Detailed studies show that reflectance spectra in nanocrystalline ZnO differ substantially from bulk material. Interaction of excitons, damped by strong electric field effects, with photons leads to exciton-polaritons with substantial damping, eliminating the normal Fabry-Perot structure seen in thin films. Good qualitative agreement is achieved between the model and data and the conclusions are also in good agreement with the photoluminescence and Raman data. Finally, high intensity optical pumping data of these samples again shows a dependence on grain size. All samples show evidence of high excitation effects and the sample with the largest grain size displays random lasing at room temperature. All our results indicate the very strong influence of electric fields due to charge trapping at grain boundaries on the optical properties of nanocrystalline ZnO

    Correlation of Raman and X-Ray Diffraction Measurements of Annealed Pulsed Laser Deposited ZnO Thin Films.

    Get PDF
    Raman spectroscopy, X-ray diffractometry and atomic force microscopy have been used to characterise ZnO thin films grown by pulsed laser deposition as a function of the post-growth annealing temperature. The results show substantial enhancement and broadening of certain Raman features which correlate excellently with the change in width of the X-ray diffraction peaks. The 570 cm[-1] Raman feature showed pronounced asymmetry and enhanced intensity in the unannealed sample. An increase in grain size observed after subsequent annealing produced a substantial reduction in both the asymmetry and intensity of this peak. Our experimental data suggest that electric fields, due to charge trapping at grain boundaries, in conjunction with localised and surface phonon modes are the cause of the intensity enhancement and asymmetry of this feature

    High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes

    Get PDF
    Freestanding semipolar (11–22) indium gallium nitride (InGaN) multiplequantum-well light-emitting diodes (LEDs) emitting at 445 nm have been realized by the use of laser lift-off (LLO) of the LEDs from a 50- m-thick GaN layer grown on a patterned (10–12) r -plane sapphire substrate (PSS). The GaN grooves originating from the growth on PSS were removed by chemical mechanical polishing. The 300 m × 300 m LEDs showed a turn-on voltage of 3.6 V and an output power through the smooth substrate of 0.87 mW at 20 mA. The electroluminescence spectrum of LEDs before and after LLO showed a stronger emission intensity along the [11–23]InGaN/GaN direction. The polarization anisotropy is independent of the GaN grooves, with a measured value of 0.14. The bandwidth of the LEDs is in excess of 150 MHz at 20 mA, and back-to-back transmission of 300 Mbps is demonstrated, making these devices suitable for visible light communication (VLC) applications

    Mechanically stacked solar cells for concentrator photovoltaics

    Get PDF
    The power output of dual-junction mechanically stacked solar cells comprising different sub-cell materials in a terrestrial concentrating photovoltaic module has been evaluated. The ideal bandgap combination of both cells in a stack was found using EtaOpt. A combination of 1.4 eV and 0.7 eV has been found to produce the highest photovoltaic conversion efficiency under the AM1.5 Direct Solar Spectrum with x500 concentration. As EtaOpt does not consider the absorption profile of solar cell materials; the practical power output per unit area of a dual junction mechanically stacked solar cell has been modelled considering the optical absorption co-efficients and thicknesses of the individual solar cells. The model considered a GaAs top cell and a Ge, GaSb, Ga0.47In0.53As or Si bottom cell. It was found that GaSb gives the highest power contribution as a bottom cell in a dual junction configuration followed by Ge and GaInAs. While the additional power provided by a Si bottom cell is less than these it remains a suitable candidate for a bottom cell owing to its lower cos

    Evaluating attention in delirium: a comparison of bedside tests of attention

    No full text
    AimImpaired attention is a core diagnostic feature for delirium. The present study examined the discriminating properties for patients with delirium versus those with dementia and/or no neurocognitive disorder of four objective tests of attention: digit span, vigilance A test, serial 7s subtraction and months of the year backwards together with global clinical subjective rating of attention. MethodsThis as a prospective study of older patients admitted consecutively in a general hospital. Participants were assessed using the Confusion Assessment Method, Delirium Rating Scale-98 Revised and Montreal Cognitive Assessment scales, and months of the year backwards. Pre-existing dementia was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders fourth edition criteria. ResultsThe sample consisted of 200 participants (mean age 81.16.5 years; 50% women; pre-existing cognitive impairment in 126 [63%]). A total of 34 (17%) were identified with delirium (Confusion Assessment Method +). The five approaches to assessing attention had statistically significant correlations (P<0.05). Discriminant analysis showed that clinical subjective rating of attention in conjunction with the months of the year backwards had the best discriminatory ability to identify Confusion Assessment Method-defined delirium, and to discriminate patients with delirium from those with dementia and/or normal cognition. Both of these approaches had high sensitivity, but modest specificity. ConclusionObjective tests are useful for prediction of non-delirium, but lack specificity for a delirium diagnosis. Global attentional deficits were more indicative of delirium than deficits of specific domains of attention. Geriatr Gerontol Int 2016; 16: 1028-1035

    Agreement and conversion formula between mini-mental state examination and montreal cognitive assessment in an outpatient sample

    Get PDF
    AIM To explore the agreement between the mini-mental state examination (MMSE) and montreal cognitive assessment (MoCA) within community dwelling older patients attending an old age psychiatry service and to derive and test a conversion formula between the two scales. METHODS Prospective study of consecutive patients attending outpatient services. Both tests were administered by the same researcher on the same day in random order. RESULTS The total sample (n = 135) was randomly divided into two groups. One to derive a conversion rule (n = 70), and a second (n = 65) in which this rule was tested. The agreement (Pearson’s r) of MMSE and MoCA was 0.86 (P < 0.001), and Lin’s concordance correlation coefficient (CCC) was 0.57 (95%CI: 0.45-0.66). In the second sample MoCA scores were converted to MMSE scores according to a conversion rule from the first sample which achieved agreement with the original MMSE scores of 0.89 (Pearson’s r, P < 0.001) and CCC of 0.88 (95%CI: 0.82-0.92). CONCLUSION Although the two scales overlap considerably, the agreement is modest. The conversion rule derived herein demonstrated promising accuracy and warrants further testing in other populations
    corecore