62 research outputs found

    Identifying critically important vascular access outcomes for trials in haemodialysis : an international survey with patients, caregivers and health professionals

    Get PDF
    BACKGROUND: Vascular access outcomes reported across haemodialysis (HD) trials are numerous, heterogeneous and not always relevant to patients and clinicians. This study aimed to identify critically important vascular access outcomes. METHOD: Outcomes derived from a systematic review, multi-disciplinary expert panel and patient input were included in a multilanguage online survey. Participants rated the absolute importance of outcomes using a 9-point Likert scale (7-9 being critically important). The relative importance was determined by a best-worst scale using multinomial logistic regression. Open text responses were analysed thematically. RESULTS: The survey was completed by 873 participants [224 (26%) patients/caregivers and 649 (74%) health professionals] from 58 countries. Vascular access function was considered the most important outcome (mean score 7.8 for patients and caregivers/8.5 for health professionals, with 85%/95% rating it critically important, and top ranked on best-worst scale), followed by infection (mean 7.4/8.2, 79%/92% rating it critically important, second rank on best-worst scale). Health professionals rated all outcomes of equal or higher importance than patients/caregivers, except for aneurysms. We identified six themes: necessity for HD, applicability across vascular access types, frequency and severity of debilitation, minimizing the risk of hospitalization and death, optimizing technical competence and adherence to best practice and direct impact on appearance and lifestyle. CONCLUSIONS: Vascular access function was the most critically important outcome among patients/caregivers and health professionals. Consistent reporting of this outcome across trials in HD will strengthen their value in supporting vascular access practice and shared decision making in patients requiring HD

    Tamoxifen-elicited uterotrophy: cross-species and cross-ligand analysis of the gene expression program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tamoxifen (TAM) is a well characterized breast cancer drug and selective estrogen receptor modulator (SERM) which also has been associated with a small increase in risk for uterine cancers. TAM's partial agonist activation of estrogen receptor has been characterized for specific gene promoters but not at the genomic level <it>in vivo</it>.Furthermore, reducing uncertainties associated with cross-species extrapolations of pharmaco- and toxicogenomic data remains a formidable challenge.</p> <p>Results</p> <p>A comparative ligand and species analysis approach was conducted to systematically assess the physiological, morphological and uterine gene expression alterations elicited across time by TAM and ethynylestradiol (EE) in immature ovariectomized Sprague-Dawley rats and C57BL/6 mice. Differential gene expression was evaluated using custom cDNA microarrays, and the data was compared to identify conserved and divergent responses. 902 genes were differentially regulated in all four studies, 398 of which exhibit identical temporal expression patterns.</p> <p>Conclusion</p> <p>Comparative analysis of EE and TAM differentially expressed gene lists suggest TAM regulates no unique uterine genes that are conserved in the rat and mouse. This demonstrates that the partial agonist activities of TAM extend to molecular targets in regulating only a subset of EE-responsive genes. Ligand-conserved, species-divergent expression of carbonic anhydrase 2 was observed in the microarray data and confirmed by real time PCR. The identification of comparable temporal phenotypic responses linked to related gene expression profiles demonstrates that systematic comparative genomic assessments can elucidate important conserved and divergent mechanisms in rodent estrogen signalling during uterine proliferation.</p

    Molecular analysis of the vaginal response to estrogens in the ovariectomized rat and postmenopausal woman

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaginal atrophy (VA) is the thinning of the vaginal epithelial lining, typically the result of lowered estrogen levels during menopause. Some of the consequences of VA include increased susceptibility to bacterial infection, pain during sexual intercourse, and vaginal burning or itching. Although estrogen treatment is highly effective, alternative therapies are also desired for women who are not candidates for post-menopausal hormone therapy (HT). The ovariectomized (OVX) rat is widely accepted as an appropriate animal model for many estrogen-dependent responses in humans; however, since reproductive biology can vary significantly between mammalian systems, this study examined how well the OVX rat recapitulates human biology.</p> <p>Methods</p> <p>We analyzed 19 vaginal biopsies from human subjects pre and post 3-month 17Ξ²-estradiol treated by expression profiling. Data were compared to transcriptional profiling generated from vaginal samples obtained from ovariectomized rats treated with 17Ξ²-estradiol for 6 hrs, 3 days or 5 days. The level of differential expression between pre- vs. post- estrogen treatment was calculated for each of the human and OVX rat datasets. Probe sets corresponding to orthologous rat and human genes were mapped to each other using NCBI Homologene.</p> <p>Results</p> <p>A positive correlation was observed between the rat and human responses to estrogen. Genes belonging to several biological pathways and GO categories were similarly differentially expressed in rat and human. A large number of the coordinately regulated biological processes are already known to be involved in human VA, such as inflammation, epithelial development, and EGF pathway activation.</p> <p>Conclusion</p> <p>At the transcriptional level, there is evidence of significant overlap of the effects of estrogen treatment between the OVX rat and human VA samples.</p

    Enhanced NFΞΊB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer

    Get PDF
    BACKGROUND: Signaling pathways that converge on two different transcription factor complexes, NFΞΊB and AP-1, have been identified in estrogen receptor (ER)-positive breast cancers resistant to the antiestrogen, tamoxifen. METHODS: Two cell line models of tamoxifen-resistant ER-positive breast cancer, MCF7/HER2 and BT474, showing increased AP-1 and NFΞΊB DNA-binding and transcriptional activities, were studied to compare tamoxifen effects on NFΞΊB and AP-1 regulated reporter genes relative to tamoxifen-sensitive MCF7 cells. The model cell lines were treated with the IKK inhibitor parthenolide (PA) or the proteasome inhibitor bortezomib (PS341), alone and in combination with tamoxifen. Expression microarray data available from 54 UCSF node-negative ER-positive breast cancer cases with known clinical outcome were used to search for potential genes signifying upregulated NFΞΊB and AP-1 transcriptional activity in association with tamoxifen resistance. The association of these genes with patient outcome was further evaluated using node-negative ER-positive breast cancer cases identified from three other published data sets (Rotterdam, n = 209; Amsterdam, n = 68; Basel, n = 108), each having different patient age and adjuvant tamoxifen treatment characteristics. RESULTS: Doses of parthenolide and bortezomib capable of sensitizing the two endocrine resistant breast cancer models to tamoxifen were capable of suppressing NFΞΊB and AP-1 regulated gene expression in combination with tamoxifen and also increased ER recruitment of the transcriptional co-repressor, NCoR. Transcript profiles from the UCSF breast cancer cases revealed three NFΞΊB and AP-1 upregulated genes – cyclin D1, uPA and VEGF – capable of dichotomizing node-negative ER-positive cases into early and late relapsing subsets despite adjuvant tamoxfien therapy and most prognostic for younger age cases. Across the four independent sets of node-negative ER-positive breast cancer cases (UCSF, Rotterdam, Amsterdam, Basel), high expression of all three NFΞΊB and AP-1 upregulated genes was associated with earliest metastatic relapse. CONCLUSION: Altogether, these findings implicate increased NFΞΊB and AP-1 transcriptional responses with tamoxifen resistant breast cancer and early metastatic relapse, especially in younger patients. These findings also suggest that agents capable of preventing NFΞΊB and AP-1 gene activation may prove useful in restoring the endocrine responsiveness of such high-risk ER-positive breast cancers

    Two Estrogen Response Element Sequences Near the PCNA Gene Are Not Responsible for Its Estrogen-Enhanced Expression in MCF7 Cells

    Get PDF
    The proliferating cell nuclear antigen (PCNA) is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE) sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2) enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2.Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays.We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation

    Implementing core outcomes in kidney disease: report of the Standardized Outcomes in Nephrology (SONG) implementation workshop

    Get PDF
    There are an estimated 14,000 randomized trials published in chronic kidney disease. The most frequently reported outcomes are biochemical endpoints, rather than clinical and patient-reported outcomes including cardiovascular disease, mortality, and quality of life. While many trials have focused on optimizing kidney health, the heterogeneity and uncertain relevance of outcomes reported across trials may limit their policy and practice impact. The international Standardized Outcomes in Nephrology (SONG) Initiative was formed to identify core outcomes that are critically important to patients and health professionals, to be reported consistently across trials. We convened a SONG Implementation Workshop to discuss the implementation of core outcomes. Eighty-two patients/caregivers and health professionals participated in plenary and breakout discussions. In this report, we summarize the findings of the workshop in two main themes: socializing the concept of core outcomes, and demonstrating feasibility and usability. We outline implementation strategies and pathways to be established through partnership with stakeholders, which may bolster acceptance and reporting of core outcomes in trials, and encourage their use by end-users such as guideline producers and policymakers to help improve patient-important outcomes

    Cytokine release: A workshop proceedings on the state-of-the-science, current challenges and future directions

    Get PDF
    In October 2013, the International Life Sciences Institute - Health and Environmental Sciences Institute Immunotoxicology Technical Committee (ILSI-HESI ITC) held a one-day workshop entitled, β€œWorkshop on Cytokine Release: State-of-the-Science, Current Challenges and Future Directions”. The workshop brought together scientists from pharmaceutical, academic, health authority, and contract research organizations to discuss novel approaches and current challenges for the use of in vitro cytokine release assays (CRAs) for the identification of cytokine release syndrome (CRS) potential of novel monoclonal antibody (mAb) therapeutics. Topics presented encompassed a regulatory perspective on cytokine release and assessment, case studies regarding the translatability of preclinical cytokine data to the clinic, and the latest state of the science of CRAs, including comparisons between mAb therapeutics within one platform and across several assay platforms, a novel physiological assay platform, and assay optimization approaches such as determination of FcR expression profiles and use of statistical tests. The data and approaches presented confirmed that multiple CRA platforms are in use for identification of CRS potential and that the choice of a particular CRA platform is highly dependent on the availability of resources for individual laboratories (e.g. positive and negative controls, number of human blood donors), the assay through-put required, and the mechanism-of-action of the therapeutic candidate to be tested. Workshop participants agreed that more data on the predictive performance of CRA platforms is needed, and current efforts to compare in vitro assay results with clinical cytokine assessments were discussed. In summary, many laboratories continue to focus research efforts on the improvement of the translatability of current CRA platforms as well explore novel approaches which may lead to more accurate, and potentially patient-specific, CRS prediction in the future
    • …
    corecore