388 research outputs found

    Free-Flight Tests of 1/9-Scale Convair YF-102 Airplane Wings at Transonic and Supersonic Speeds to Investigate the Possibility of Flutter

    Get PDF
    Free-flight tests in the transonic and supersonic speed ranges utilizing rocket-propelled models have been made on two pairs of 1/9-scale Convair YF-102 airplane wings with elevons to investigate the possibility of flutter . These wings had modified 60 deg delta plan forms with the trailing edge swept forward 5 deg. The aspect ratio of two exposed wing panels was 2.19 and the wings had NACA 0004-65 (modified) airfoil sections. The model wings and elevons were dynamic-scale models at sea level of the full-scale wings at 20,000 feet. The first set of wings developed elevon buzz near a Mach number of 1 during both power-on and coasting flight at amplitudes of equal to or greater than +/-4 deg.. The second set of wings did not develop the elevon buzz experienced by the first set but, as the model reached the maximum speed of the test (Mach number 1.93), one or both of the wings suddenly failed, possibly as a result of aerodynamic heating or high stresses imposed on the wings at separation from the booster. No flutter was experienced during either flight

    Free-Flight Tests of 0.11-Scale North American F-100 Airplane Wings to Investigate the Possibility of Flutter in Transonic Speed Range at Varying Angles of Attack

    Get PDF
    Free-flight tests in the transonic speed range utilizing rocketpropelled models have been made on three pairs of 0.11-scale North American F-100 airplane wings having an aspect ratio of 3.47, a taper ratio of 0.308, 45 degree sweepback at the quarter-chord line, and thickness ratios of 31 and 5 percent to investigate the possibility of flutte r. Data from tests of two other rocket-propelled models which accidentally fluttered during a drag investigation of the North American F-100 airplane are also presented. The first set of wings (5 percent thick) was tested on a model which was disturbed in pitch by a moving tail and reached a maximum Mach number of 0.85. The wings encountered mild oscillations near the first - bending frequency at high lift coefficients. The second set of wings 9 percent thick was tested up to a maximum Mach number of 0.95 at (2) angles of attack provided by small rocket motors installed in the nose of the model. No oscillations resembling flutter were encountered during the coasting flight between separation from the booster and sustainer firing (Mach numbers from 0.86 to 0.82) or during the sustainer firing at accelerations of about 8g up to the maximum Mach number of the test (0.95). The third set of wings was similar to the first set and was tested up to a maximum Mach number of 1.24. A mild flutter at frequencies near the first-bending frequency of the wings was encountered between a Mach number of 1.15 and a Mach number of 1.06 during both accelerating and coasting flight. The two drag models, which were 0.ll-scale models of the North American F-100 airplane configuration, reached a maximum Mach number of 1.77. The wings of these models had bending and torsional frequencies which were 40 and 89 percent, respectively, of the calculated scaled frequencies of the full-scale 7-percent-thick wing. Both models experienced flutter of the same type as that experienced-by the third set of wings

    Glutamate cycling may drive organic anion transport on the basal membrane of human placental syncytiotrophoblast

    No full text
    The organic anion transporter OAT4 (SLC22A11) and organic anion transporting polypeptide OATP2B1 (SLCO2B1) are expressed in the basal membrane of the placental syncytiotrophoblast. These transporters mediate exchange whereby uptake of one organic anion is coupled to efflux of a counter-ion. In placenta, these exchangers mediate placental uptake of substrates for oestrogen synthesis as well as clearing waste products and xenobiotics from the fetal circulation. However, the identity of the counter-ion driving this transport in the placenta, and in other tissues, is unclear. While glutamate is not a known OAT4 or OATP2B1 substrate, we propose that its high intracellular concentration has the potential to drive accumulation of substrates from the fetal circulation. In the isolated perfused placenta, glutamate exchange was observed between the placenta and the fetal circulation. This exchange could not be explained by known glutamate exchangers. However, glutamate efflux was trans-stimulated by an OAT4 and OATP2B1 substrate (bromosulphothalein). Exchange of glutamate for bromosulphothalein was only observed when glutamate reuptake was inhibited (by addition of aspartate). To determine if OAT4 and/or OATP2B1 mediate glutamate exchange, uptake and efflux of glutamate were investigated in Xenopus laevis oocytes. Our data demonstrate that in Xenopus oocytes expressing either OAT4 or OATP2B1 efflux of intracellular [14C]glutamate could be stimulated by conditions including extracellular glutamate (OAT4), estrone-sulphate and bromosulphothalein (both OAT4 and OATP2B1) or pravastatin (OATP2B1). Cycling of glutamate across the placenta involving efflux via OAT4 and OATP2B1 and subsequent reuptake will drive placental uptake of organic anions from the fetal circulation.<br/

    Nuclear small-subunit ribosomal RNA gene-based characterization, molecular phylogeny and PCR detection of the Neoparamoeba from western Long Island Sound lobster

    Get PDF
    Author Posting. © National Shellfisheries Association, 2005. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 24 (2005): 719-731, doi:10.2983/0730-8000(2005)24[719:NSRRGC]2.0.CO;2.Western Long Island Sound (LIS) lobsters collected by trawl surveys, lobstermen and coastal residents during 2000 to 2002 were identified histologically as infected with a parasome-containing amoeba. Primers to conserved SSU rRNA sequences of parasome-containing amoebae and their nonparasome-containing relatives were used to amplify overlapping SSU rRNA fragments of the presumptive parasite from gill, antenna, antennal gland and ventral nerve cord of infected lobsters. The consensus sequence constructed from these fragments had 98% or greater nucleotide sequence identity with SSU rRNA gene sequences of strains of Neoparamoeba pemaquidensis and associated with high confidence in distance- and parsimony-based phylogenetic analyses with strains of Neoparamoeba pemaquidensis and not members of the family Paramoebidae, e.g., Paramoeba eilhardi. Primers designed to SSU rRNA sequences of the lobster amoeba and other paramoebid/vexilliferid amoebae were used in a nested polymerase chain reaction (PCR) protocol to test DNA extracted from formalin-fixed paraffin-embedded tissues of lobsters collected during the 1999 die-off, when this amoeba initially was identified by light and electron microscopy and reported to be a paramoeba of the genera Paramoeba or Neoparamoeba (Mullen et al. 2004). All sequences amplified from 1999 lobsters, with the exception of one, had 98% to 99% identity to each other, and the 1999 PCR product consensus had 98% identity to Neoparamoeba pemaquidensis strains CCAP 1560/4 (AF371969.1) and 1560/5 (AF371970.1). Molecular characterization of the amoeba from western LIS lobsters by direct amplification circumvents a collective inability to culture the organism in vitro, provides insight into the molecular epidemiology of neoparamoebiasis in American lobster, and allows for PCR-based detection of infected lobsters for future research and diagnostics.Funding for this work was provided by the Connecticut Department of Environmental Protection under Long Island Sound Research Fund Grant No. CWF 333-R to S. Frasca; and by the Connecticut Sea Grant College Program, Grants No. LR/LR-4 to R. Gast and No. LR/LR-5 to P. Gillevet and C. O’Kelly, through the US Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), Award NA16RG1364
    • …
    corecore