22 research outputs found

    Chalk streams and grazing mute swans

    Get PDF
    The evidence shows that swan grazing can reduce plant abundance, prevent flowering, reduce water depth and reduce fishery value. However, these effects seem to be limited to a small number of sites on larger chalk streams. The results of attempted management have been disappointing, and we currently have no simple effective means of preventing grazing damage. However, our understanding of the effects of swans on the chalk stream ecosystem has been growing rapidly, which gives us hope for future solutions. In particular, combining strategies which improve river condition and move swans away from sensitive areas could offer a way of managing grazing effects

    Receptors on phaeochromocytoma cells for two members of the PP-fold family — NPY and PP

    Get PDF
    AbstractPancreatic polypeptide (PP) and neuropeptide Y (NPY) belong to a family of regulatory peptides which hold a distinct tertiary structure, the PP-fold, even in dilute aqueous solution. High-affinity receptors, specific for both PP and NPY, are described on the rat phaeochromocytoma cell line, PC-12. The binding of [125I-Tyr36]PP to PC-12 cells was inhibited by concentrations of unlabeled PP which correspond to physiological concentrations of the hormone, 10−11-10−9 mol/1. The affinity of the receptor for the neuropeptide, NPY, was 102-times lower than that of the PP receptor. C-terminal fragments of both PP (PP24–36) and NPY (NPY13–36) were between 102 - and 103-times less potent in displacing the radiolabeled 36-amino-acid peptides from their respective receptors. It is concluded that PC-12 cells are suited for structure-function studies of the PP-fold peptides and studies on the cellular events following cellular binding of PP-fold peptides

    Understanding biological responses to degraded hydromorphology and multiple stresses. Deliverable 3.2 of REFORM (REstoring rivers FOR effective catchment Management), a Collaborative project (large-scale integrating project) funded by the European Commission within the 7th Framework Programme under Grant Agreement 282656

    Get PDF
    The aim of this deliverable is to conceptually model and empirically test the response of biota to the effects of both hydromorphological pressures acting in concert with one another or with other types of pressures. Best use is made of existing large national monitoring datasets (Denmark, UK, Finland, France, Germany, Austria & WISER datasets), case studies and modeling to provide evidence of multiple stressors interacting to alter river biota (Biological Quality Elements: BQE)

    An exploration of associations between assemblages of aquatic plant morphotypes and channel geomorphological properties within British rivers

    No full text
    Riparian vegetation, particularly trees and shrubs, can play a crucial role in the construction and turnover of fluvial landforms, but aquatic plants may also act as river ecosystem engineers. Macrophyte and environmental data from 467 British river reaches are used to explore associations between aquatic plant morphotypes and the physical characteristics of the reaches. The abundance of five plant morphotypes (mosses, linear-submerged, patch-submerged, linear emergent, branched emergent) is estimated for each river reach. Cluster analysis is applied to the abundances of the five morphotypes across the 467 reaches to identify six typical assemblages or clusters of the morphotypes. These clusters are found to be associated with statistically significantly different values of seven physical variables (altitude, slope, median annual flood discharge, channel width, mean bed sediment size, percentage cover of sand and silt on the river bed, and unit stream power). Associations between the morphotype clusters and combinations of the physical variables are explored using Canonical Correspondence Analysis and standard slope–discharge–sediment calibre–channel style graphs. Several of the morphotype clusters are discriminated by unit stream power and bed sediment size. In particular, morphotype clusters dominated by emergent and submerged macrophytes are associated with granules, sand, and finer bed sediments and are rarely found where unit stream power exceeds 100Wm−2. One cluster characterised by branched emergent species with relatively low cover of submerged morphotypes is confined to sites with unit stream power below 20Wm−2; and another cluster characterised by linear emergents with low cover of submerged morphotypes is associated with particularly extensive, fine bed sediments, suggesting possible smothering of submerged plants. In contrast, mosses reach their highest abundance in two clusters associated with the highest unit stream power and coarsest bed sediments, with the patch-submerged morphotype reaching relatively high abundance in the slightly lower energy cluster of these two. British rivers have been modified over hundreds of years such that the sample of study reaches have predominantly single-thread channels. However, the plotting positions of these reaches on established graphs describing slope–discharge–sediment calibre–channel style associations, illustrates the potential of some of these sites to develop wandering or braided forms and, in lower energy situations, the potential for aquatic plants to trap fine sediments and contribute to landform building and channel change if maintenance (cutting and dredging) of the emergent and submerged morphotypes were reduced

    Profiling, the below ground biomass of an emergent macrophyte using an adapted ingrowth core method

    No full text
    In the context of our work exploring the role of Sparganium erectum as a physical ecosystem engineer, we aimed to test our hypothesis that the root and rhizome biomass of this species would be largely confined to the uppermost sediment layers, thereby having the effect of reinforcing newly deposited material and facilitating the growth of in-channel macrophyte stands and sediment accumulations. Detailed measurements of the below ground structures of linear emergent macrophytes, in terms of their biomass and architecture, are complicated by difficulties associated with sampling in the highly saturated sediments that these morphotypes typically occupy. In this paper, we describe the development of an adapted ingrowth core method, which allows the extrusion of an undisturbed root-soil matrix from highly saturated environments. The approach combines an ingrowth core, which is commonly used to measure fine-root production in forest topsoil, with an outer casing that facilitates the retention of a sample representative of field conditions, and a laboratory protocol that enables extrusion and measurement of biomass at different depth increments. The new approach enabled detailed depth profiling of S. erectum, and confirmed our hypothesis by demonstrating that root and rhizome biomass was predominantly located in the 10 cm of sediment closest to the sediment–water interface throughout our study

    The development of memory and processing capacity.

    No full text
    The assumption of some developmental theories that short‐term memory is the workspace of higher cognitive processes, and consequently that span measures processing capacity, is claimed to be inconsistent with the working memory literature. 4 experiments, using children aged 5 to 12 years, contrast this theory with a model in which short‐term memory and the processing space component of working memory are at least partly distinct. Experiments 1 and 2 varied processing load, holding duration constant. The processing load manipulation had little effect on recall of a short‐term memory preload. Experiments 3 and 4 failed to support the prediction that the greater processing efficiency of older children would be associated with slower loss of information from short‐term memory. Although counting and rehearsal rates increased with age, and correlated with span, they did not predict the rate of loss of memory preload due to intervening counting. The data suggest that effects obtained with short‐term memory span do not provide clear indications of overall working memory development, because short‐term memory span and the processing space component of working memory entail distinct systems
    corecore