76 research outputs found

    Drooling Reduction Intervention randomised trial (DRI): comparing the efficacy and acceptability of hyoscine patches and glycopyrronium liquid on drooling in children with neurodisability

    Get PDF
    Objective: Investigate whether hyoscine patch or glycopyrronium liquid is more effective and acceptable to treat drooling in children with neurodisability. Design: Multicentre, single-blind, randomised controlled trial. Setting: Recruitment through neurodisability teams; treatment by parents. Participants: Ninety children with neurodisability who had never received medication for drooling (55 boys, 35 girls; median age 4 years). Exclusion criteria: medication contraindicated; in a trial that could affect drooling or management. Intervention: Children were randomised to receive a hyoscine skin patch or glycopyrronium liquid. Dose was increased over 4 weeks to achieve optimum symptom control with minimal side-effects; steady dose then continued to 12 weeks. Primary and secondary outcomes: Primary outcome: Drooling Impact Scale (DIS) score at week-4. Secondary outcomes: change in DIS scores over 12 weeks, Drooling Severity and Frequency Scale and Treatment Satisfaction Questionnaire for Medication; adverse events; children’s perception about treatment. Results: Both medications yielded clinically and statistically significant reductions in mean DIS at week-4 (25.0 (SD 22.2) for hyoscine and 26.6 (SD 16) for glycopyrronium). There was no significant difference in change in DIS scores between treatment groups. By week-12, 26/47 (55%) children starting treatment were receiving hyoscine compared with 31/38 (82%) on glycopyrronium. There was a 42% increased chance of being on treatment at week-12 for children randomised to glycopyrronium relative to hyoscine (1.42, 95% CI 1.04 to 1.95). Conclusions: Hyoscine and glycopyrronium are clinically effective in treating drooling in children with neurodisability. Hyoscine produced more problematic side effects leading to a greater chance of treatment cessation

    Development of a minimally invasive microneedle-based sensor for continuous monitoring of Ξ²-lactam antibiotic concentrations in vivo

    Get PDF
    Antimicrobial resistance poses a global threat to patient health. Improving the use and effectiveness of antimicrobials is critical in addressing this issue. This includes optimizing the dose of antibiotic delivered to each individual. New sensing approaches that track antimicrobial concentration for each patient in real time could allow individualized drug dosing. This work presents a potentiometric microneedle-based biosensor to detect levels of Ξ²-lactam antibiotics in vivo in a healthy human volunteer. The biosensor is coated with a pH-sensitive iridium oxide layer, which detects changes in local pH as a result of Ξ²-lactam hydrolysis by Ξ²-lactamase immobilized on the electrode surface. Development and optimization of the biosensor coatings are presented, giving a limit of detection of 6.8 ΞΌM in 10 mM PBS solution. Biosensors were found to be stable for up to 2 weeks at -20 Β°C and to withstand sterilization. Sensitivity was retained after application for 6 h in vivo. Proof-of-concept results are presented showing that penicillin concentrations measured using the microneedle-based biosensor track those measured using both discrete blood and microdialysis sampling in vivo. These preliminary results show the potential of this microneedle-based biosensor to provide a minimally invasive means to measure real-time Ξ²-lactam concentrations in vivo, representing an important first step toward a closed-loop therapeutic drug monitoring system

    Innate Immune Responses to Bacterial Ligands in the Peripheral Human Lung – Role of Alveolar Epithelial TLR Expression and Signalling

    Get PDF
    It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFΞ±, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens

    Understanding the Role of PknJ in Mycobacterium tuberculosis: Biochemical Characterization and Identification of Novel Substrate Pyruvate Kinase A

    Get PDF
    Reversible protein phosphorylation is a prevalent signaling mechanism which modulates cellular metabolism in response to changing environmental conditions. In this study, we focus on previously uncharacterized Mycobacterium tuberculosis Ser/Thr protein kinase (STPK) PknJ, a putative transmembrane protein. PknJ is shown to possess autophosphorylation activity and is also found to be capable of carrying out phosphorylation on the artificial substrate myelin basic protein (MyBP). Previous studies have shown that the autophosphorylation activity of M. tuberculosis STPKs is dependent on the conserved residues in the activation loop. However, our results show that apart from the conventional conserved residues, additional residues in the activation loop may also play a crucial role in kinase activation. Further characterization of PknJ reveals that the kinase utilizes unusual ions (Ni2+, Co2+) as cofactors, thus hinting at a novel mechanism for PknJ activation. Additionally, as shown for other STPKs, we observe that PknJ possesses the capability to dimerize. In order to elucidate the signal transduction cascade emanating from PknJ, the M. tuberculosis membrane-associated protein fraction is treated with the active kinase and glycolytic enzyme Pyruvate kinase A (mtPykA) is identified as one of the potential substrates of PknJ. The phospholabel is found to be localized on serine and threonine residue(s), with Ser37 identified as one of the sites of phosphorylation. Since Pyk is known to catalyze the last step of glycolysis, our study shows that the fundamental pathways such as glycolysis can also be governed by STPK-mediated signaling

    Parental phonological memory contributes to prediction of outcome of late talkers from 20 months to 4 years: a longitudinal study of precursors of specific language impairment

    Get PDF
    Background Many children who are late talkers go on to develop normal language, but others go on to have longer-term language difficulties. In this study, we considered which factors were predictive of persistent problems in late talkers. Methods Parental report of expressive vocabulary at 18 months of age was used to select 26 late talkers and 70 average talkers, who were assessed for language and cognitive ability at 20 months of age. Follow-up at 4 years of age was carried out for 24 late and 58 average talkers. A psychometric test battery was used to categorize children in terms of language status (unimpaired or impaired) and nonverbal ability (normal range or more than 1 SD below average). The vocabulary and non-word repetition skills of the accompanying parent were also assessed. Results Among the late talkers, seven (29%) met our criteria for specific language impairment (SLI) at 4 years of age, and a further two (8%) had low nonverbal ability. In the group of average talkers, eight (14%) met the criteria for SLI at 4 years, and five other children (8%) had low nonverbal ability. Family history of language problems was slightly better than late-talker status as a predictor of SLI.. The best predictors of SLI at 20 months of age were score on the receptive language scale of the Mullen Scales of Early Learning and the parent's performance on a non-word repetition task. Maternal education was not a significant predictor of outcome. Conclusions In this study, around three-quarters of late talkers did not have any language difficulties at 4 years of age, provided there was no family history of language impairment. A family history of language-literacy problems was found to be a significant predictor for persisting problems. Nevertheless, there are children with SLI for whom prediction is difficult because they did not have early language delay

    Imaging the boundariesβ€”innovative tools for microscopy of living cells and real-time imaging

    Get PDF
    Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes β€œat work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The discussed technologies include nanoscale fluorescence microscopy, imaging of model membranes, automated high-throughput microscopy control and analysis, and fluorescent probes with a special focus on visualizing enzyme activity, free radicals, and protein–protein interaction designed for use in living cells

    SOX2 Co-Occupies Distal Enhancer Elements with Distinct POU Factors in ESCs and NPCs to Specify Cell State

    Get PDF
    SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1) in ESCs, the related POU family member BRN2 (Pou3f2) co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors

    Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement

    Get PDF
    This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)β€”the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)
    • …
    corecore