14 research outputs found

    Development of a Life History Database for Upper Mississippi River Fishes

    Get PDF
    This report summarizes the development of a life history database for Upper Mississippi River System fishes. It provides the rationale for its development within the Long Term Resource Monitoring Program, describes it, outlines standards for its development. and demonstrates how it can be linked to the LTRMP fisheries database and used to address a host of new questions relevant to management and science in the basin.U.S. Army Corps of Engineers District, Rock Island Clock Tower BuildingOpe

    Biological life-history and farming scenarios of marine aquaculture to help reduce wild marine fishing pressure

    Get PDF
    Aquaculture (freshwater and marine) has largely supplemented fisheries, but in theory could help reduce fishing pressure on wild stocks. Although not the sole factors, some potential benefits depend on aquaculture pressures on fished species, including collection of wild ‘seed’ material—earlier to later life stages—for rearing in captivity and the capacity of aquaculture to increase. Here we first classify 203 marine (saltwater and brackish) animal species as being produced by either open-cycle capture-based aquaculture (CBA) or closed-cycle domesticated aquaculture (DA)—based on their likely reliance on wild seed—and assess the extent to which these forms of aquaculture could support seafood production and greater wild biomass. Using a data-limited modelling approach, we find evidence that current aquaculture practices are not necessarily helping reduce fishing to sustainable levels for their wild counterparts—consistent with emerging scientific research. However, if some wild capture species (87 equivalent spp.) were instead produced through CBA, almost a million extra tonnes could theoretically be left in the wild, without reducing seafood production. Alternatively, if reliance on wild seed inputs is further reduced by shifting to DA production, then a little less than doubling of aquaculture of the overexploited species in our study could help fill the ‘production gap’ to support fishing at maximum sustainable levels. While other ecological (e.g. escapes), social and economic considerations (e.g. market substitution) are important, we focused on a critical biological linkage between wild fisheries and aquaculture that provides another aspect on how to improve management alignment of the sectors

    Butyltin and phenyltin compounds in eels ( Anguilla anguilla

    No full text
    corecore