7,067 research outputs found

    The Influence of Thermal Pressure on Equilibrium Models of Hypermassive Neutron Star Merger Remnants

    Get PDF
    The merger of two neutron stars leaves behind a rapidly spinning hypermassive object whose survival is believed to depend on the maximum mass supported by the nuclear equation of state, angular momentum redistribution by (magneto-)rotational instabilities, and spindown by gravitational waves. The high temperatures (~5-40 MeV) prevailing in the merger remnant may provide thermal pressure support that could increase its maximum mass and, thus, its life on a neutrino-cooling timescale. We investigate the role of thermal pressure support in hypermassive merger remnants by computing sequences of spherically-symmetric and axisymmetric uniformly and differentially rotating equilibrium solutions to the general-relativistic stellar structure equations. Using a set of finite-temperature nuclear equations of state, we find that hot maximum-mass critically spinning configurations generally do not support larger baryonic masses than their cold counterparts. However, subcritically spinning configurations with mean density of less than a few times nuclear saturation density yield a significantly thermally enhanced mass. Even without decreasing the maximum mass, cooling and other forms of energy loss can drive the remnant to an unstable state. We infer secular instability by identifying approximate energy turning points in equilibrium sequences of constant baryonic mass parametrized by maximum density. Energy loss carries the remnant along the direction of decreasing gravitational mass and higher density until instability triggers collapse. Since configurations with more thermal pressure support are less compact and thus begin their evolution at a lower maximum density, they remain stable for longer periods after merger.Comment: 20 pages, 12 figures. Accepted for publication in Ap

    Semantic analysis of field sports video using a petri-net of audio-visual concepts

    Get PDF
    The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework

    Explanation and Elaboration Document for the STROBE-Vet Statement: Strengthening the Reporting of Observational Studies in Epidemiology—Veterinary Extension

    Get PDF
    The STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement was first published in 2007 and again in 2014. The purpose of the original STROBE was to provide guidance for authors, reviewers and editors to improve the comprehensiveness of reporting; however, STROBE has a unique focus on observational studies. Although much of the guidance provided by the original STROBE document is directly applicable, it was deemed useful to map those statements to veterinary concepts, provide veterinary examples and highlight unique aspects of reporting in veterinary observational studies. Here, we present the examples and explanations for the checklist items included in the STROBE-Vet Statement. Thus, this is a companion document to the STROBE-Vet Statement Methods and process document, which describes the checklist and how it was developed

    Effective Lagrangian for self-interacting scalar field theories in curved spacetime

    Get PDF
    We consider a self-interacting scalar field theory in a slowly varying gravitational background field. Using zeta-function regularization and heat-kernel techniques, we derive the one-loop effective Lagrangian up to second order in the variation of the background field and up to quadratic terms in the curvature tensors. Specializing to different spacetimes of physical interest, the influence of the curvature on the phase transition is considered.Comment: 14 pages, LaTex, UTF 29

    Locally suppressed transverse-field protocol for diabatic quantum annealing

    Get PDF
    Diabatic quantum annealing (DQA) is an alternative algorithm to adiabatic quantum annealing that can be used to circumvent the exponential slowdown caused by small minima in the annealing energy spectrum. We present the locally suppressed transverse-field (LSTF) protocol, a heuristic method for making stoquastic optimization problems compatible with DQA. We show that, provided an optimization problem intrinsically has magnetic frustration due to inhomogeneous local fields, a target qubit in the problem can always be manipulated to create a double minimum in the energy gap between the ground and first excited states during the evolution of the algorithm. Such a double energy minimum can be exploited to induce diabatic transitions to the first excited state and back to the ground state. In addition to its relevance to classical and quantum algorithmic speedups, the LSTF protocol enables DQA proof-of-principle and physics experiments to be performed on existing hardware, provided independent controls exist for the transverse qubit magnetization fields. We discuss the implications on the coherence requirements of the quantum annealing hardware when using the LSTF protocol, considering specifically the cases of relaxation and dephasing. We show that the relaxation rate of a large system can be made to depend only on the target qubit, presenting opportunities for the characterization of the decohering environment in a quantum annealing processor

    Cognitive Speed of Processing Training Can Promote Community Mobility among Older Adults: A Brief Review

    Get PDF
    Background. Community mobility is crucial for maintaining independent functioning and quality of life for older adults. Purpose. The present paper describes the relationship of cognition, particularly speed of processing as measured by the Useful Field of View Test, to mobility as indicated by driving behaviors, life space, and falls among healthy older adults. Research examining the impact of cognitive speed of processing training (SOPT) on older adults' community mobility (i.e., driving behaviors) is also summarized. Key Issues. Even slight cognitive declines can place older adults at risk for mobility limitations. However, cognitive interventions like SOPT can mitigate declines in driving mobility. Implications. The potential of SOPT to sustain community mobility among older adults is discussed

    Field Theory Entropy, the HH-theorem and the Renormalization Group

    Get PDF
    We consider entropy and relative entropy in Field theory and establish relevant monotonicity properties with respect to the couplings. The relative entropy in a field theory with a hierarchy of renormalization group fixed points ranks the fixed points, the lowest relative entropy being assigned to the highest multicritical point. We argue that as a consequence of a generalized HH theorem Wilsonian RG flows induce an increase in entropy and propose the relative entropy as the natural quantity which increases from one fixed point to another in more than two dimensions.Comment: 25 pages, plain TeX (macros included), 6 ps figures. Addition in title. Entropy of cutoff Gaussian model modified in section 4 to avoid a divergence. Therefore, last figure modified. Other minor changes to improve readability. Version to appear in Phys. Rev.

    Equation of state effects in the core collapse of a 20−M_⊙ star

    Get PDF
    Uncertainties in our knowledge of the properties of dense matter near and above nuclear saturation density are among the main sources of variations in multimessenger signatures predicted for core-collapse supernovae (CCSNe) and the properties of neutron stars (NSs). We construct 97 new finite-temperature equations of state (EOSs) of dense matter that obey current experimental, observational, and theoretical constraints and discuss how systematic variations in the EOS parameters affect the properties of cold nonrotating NSs and the core collapse of a 20−M_⊙ progenitor star. The core collapse of the 20−M_⊙ progenitor star is simulated in spherical symmetry using the general-relativistic radiation-hydrodynamics code GR1D where neutrino interactions are computed for each EOS using the NuLib library. We conclude that the effective mass of nucleons at densities above nuclear saturation density is the largest source of uncertainty in the CCSN neutrino signal and dynamics even though it plays a subdominant role in most properties of cold NS matter. Meanwhile, changes in other observables affect the properties of cold NSs, while having little effect in CCSNe. To strengthen our conclusions, we perform six octant three-dimensional CCSN simulations varying the effective mass of nucleons at nuclear saturation density. We conclude that neutrino heating and, thus, the likelihood of explosion is significantly increased for EOSs where the effective mass of nucleons at nuclear saturation density is large
    corecore