12,039 research outputs found
A Construction of Solutions to Reflection Equations for Interaction-Round-a-Face Models
We present a procedure in which known solutions to reflection equations for
interaction-round-a-face lattice models are used to construct new solutions.
The procedure is particularly well-suited to models which have a known fusion
hierarchy and which are based on graphs containing a node of valency . Among
such models are the Andrews-Baxter-Forrester models, for which we construct
reflection equation solutions for fixed and free boundary conditions.Comment: 9 pages, LaTe
“I wish I’d told them”: a qualitative study examining the unmet psychosexual needs of prostate cancer patients during follow-up after treatment
<b>Objective</b> To gain insight into patients' experiences of follow-up care after treatment for prostate cancer and identify unmet psychosexual needs.<p></p>
<b>Methods</b> Semi-structured interviews were conducted with a purposive sample of 35 patients aged 59-82 from three UK regions. Partners were included in 18 interviews. Data were analyzed using constant comparison. <p></p>
<b>Results</b> (1) Psychosexual problems gained importance over time, (2) men felt they were rarely invited to discuss psychosexual side effects within follow-up appointments and lack of rapport with health care professionals made it difficult to raise problems themselves, (3) problems were sometimes concealed or accepted and professionals' attempts to explore potential difficulties were resisted by some, and (4) older patients were too embarrassed to raise psychosexual concerns as they felt they would be considered 'too old' to be worried about the loss of sexual function.<p></p>
<b>Conclusion</b> Men with prostate cancer, even the very elderly, have psychosexual issues for variable times after diagnosis. These are not currently always addressed at the appropriate time for the patient.Practice implications Assessments of psychosexual problems should take place throughout the follow-up period, and not only at the time of initial treatment. Further research examining greater willingness or reluctance to engage with psychosexual interventions may be particularly helpful in designing future intervention
Abnormal infant islet morphology precedes insulin resistance in PCOS-like monkeys.
Polycystic ovary syndrome (PCOS) is prevalent in reproductive-aged women and confounded by metabolic morbidities, including insulin resistance and type 2 diabetes. Although the etiology of PCOS is undefined, contribution of prenatal androgen (PA) exposure has been proposed in a rhesus monkey model as premenopausal PA female adults have PCOS-like phenotypes in addition to insulin resistance and decreased glucose tolerance. PA female infants exhibit relative hyperinsulinemia, suggesting prenatal sequelae of androgen excess on glucose metabolism and an antecedent to future metabolic disease. We assessed consequences of PA exposure on pancreatic islet morphology to identify evidence of programming on islet development. Islet counts and size were quantified and correlated with data from intravenous glucose tolerance tests (ivGTT) obtained from dams and their offspring. Average islet size was decreased in PA female infants along with corresponding increases in islet number, while islet fractional area was preserved. Infants also demonstrated an increase in both the proliferation marker Ki67 within islets and the beta to alpha cell ratio suggestive of enhanced beta cell expansion. PA adult females have reduced proportion of small islets without changes in proliferative or apoptotic markers, or in beta to alpha cell ratios. Together, these data suggest in utero androgen excess combined with mild maternal glucose intolerance alter infant and adult islet morphology, implicating deviant islet development. Marked infant, but subtle adult, morphological differences provide evidence of islet post-natal plasticity in adapting to changing physiologic demands: from insulin sensitivity and relative hypersecretion to insulin resistance and diminished insulin response to glucose in the mature PCOS-like phenotype
Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: II. 1D hydrodynamical models of wind driven shocks
Following the early Swift X-ray observations of the latest outburst of the
recurrent nova RS Ophiuchi in February 2006 (Paper I), we present new 1D
hydrodynamical models of the system which take into account all three phases of
the remnant evolution. The models suggest a novel way of modelling the system
by treating the outburst as a sudden increase then decrease in wind mass-loss
rate and velocity. The differences between this wind model and previous
Primakoff-type simulations are described. A more complex structure, even in 1D,
is revealed through the presence of both forward and reverse shocks, with a
separating contact discontinuity. The effects of radiative cooling are
investigated and key outburst parameters such as mass-loss rate, ejecta
velocity and mass are varied. The shock velocities as a function of time are
compared to the ones derived in Paper I. We show how the manner in which the
matter is ejected controls the evolution of the shock and that for a
well-cooled remnant, the shock deceleration rate depends on the amount of
energy that is radiated away.Comment: 9 pages, 5 figure
Single-Walled Carbon Nanotubes as Shadow Masks for Nanogap Fabrication
We describe a technique for fabricating nanometer-scale gaps in Pt wires on
insulating substrates, using individual single-walled carbon nanotubes as
shadow masks during metal deposition. More than 80% of the devices display
current-voltage dependencies characteristic of direct electron tunneling. Fits
to the current-voltage data yield gap widths in the 0.8-2.3 nm range for these
devices, dimensions that are well suited for single-molecule transport
measurements
Construction and evaluation of group tests in reading for grades one, two, and three.
Thesis (Ed.M.)--Boston Universit
Coupling and induced depinning of magnetic domain walls in adjacent spin valve nanotracks
The magnetostatic interaction between magnetic domain walls (DWs) in adjacent
nanotracks has been shown to produce strong inter-DW coupling and mutual
pinning. In this paper, we have used electrical measurements of adjacent
spin-valve nanotracks to follow the positions of interacting DWs. We show that
the magnetostatic interaction between DWs causes not only mutual pinning, as
observed till now, but that a travelling DW can also induce the depinning of
DWs in near-by tracks. These effects may have great implications for some
proposed high density magnetic devices (e.g. racetrack memory, DW logic
circuits, or DW-based MRAM).Comment: The following article has been accepted by the Journal of Applied
Physic
An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines
We present graphically the results of several thousand photoionization
calculations of broad emission line clouds in quasars, spanning seven orders of
magnitude in hydrogen ionizing flux and particle density. The equivalent widths
of 42 quasar emission lines are presented as contours in the particle density -
ionizing flux plane for a typical incident continuum shape, solar chemical
abundances, and cloud column density of . Results are
similarly given for a small subset of emission lines for two other column
densities ( and ), five other incident
continuum shapes, and a gas metallicity of 5 \Zsun. These graphs should prove
useful in the analysis of quasar emission line data and in the detailed
modeling of quasar broad emission line regions. The digital results of these
emission line grids and many more are available over the Internet.Comment: 16 pages, LaTeX (AASTeX aaspp4.sty); to appear in the 1997 ApJS: full
contents of the 9 photoionization grids presented in this paper may be found
at http://www.pa.uky.edu/~korista/grids/grids.htm
Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data
Abstract
We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the Energetic Particle, Composition, and Thermal Plasma/Magnetic Electron Ion Spectrometer (MagEIS) sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons \u3e900 keV were observed with equatorial fluxes above background (i.e., \u3e0.1 el/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes \u3c200 keV exceeded the AE9 model 50% fluxes and were lower than the higher-energy model fluxes. Phase space density radial profiles for 1.3 ≤ L* \u3c 2.5 had mostly positive gradients except near L*~2.1, where the profiles for μ = 20–30 MeV/G were flat or slightly peaked. The major result is that MagEIS data do not show the presence of significant fluxes of MeV electrons in the inner zone while current radiation belt models and previous publications do
Evidence for Nonlinear X-ray Variability from the Broad-line Radio Galaxy 3C 390.3
We present analysis of the light curve from the ROSAT HRI monitoring
observations of the broad-line radio galaxy 3C 390.3. Observed every three days
for about 9 months, this is the first well sampled X-ray light curve on these
time scales. The flares and quiescent periods in the light curve suggest that
the variability is nonlinear, and a statistical test yields a detection with >6
sigma confidence. The structure function has a steep slope ~0.7, while the
periodogram is much steeper with a slope ~2.6, with the difference partially
due to a linear trend in the data. The non-stationary character of the light
curve could be evidence that the variability power spectrum has not turned over
to low frequencies, or it could be an essential part of the nonlinear process.
Evidence for X-ray reprocessing suggests that the X-ray emission is not from
the compact radio jet, and the reduced variability before and after flares
suggests there cannot be two components contributing to the X-ray short term
variability. Thus, these results cannot be explained easily by simple models
for AGN variability, including shot noise which may be associated with flares
in disk-corona models or active regions on a rotating disk, because in those
models the events are independent and the variability is therefore linear. The
character of the variability is similar to that seen in Cygnus X-1, which has
been explained by a reservoir or self-organized criticality model. Inherently
nonlinear, this model can reproduce the reduced variability before and after
large flares and the steep PDS seen generally from AGN. The 3C 390.3 light
curve presented here is the first support for such models to explain AGN
variability on intermediate time scales from a few days to months.Comment: 10 pages using (AASTeX) aaspp4.sty and 3 Postscript figures.
Astrophysical Journal Letters, in pres
- …