15 research outputs found

    Broadband Squeezed Microwaves and Amplification with a Josephson Traveling-Wave Parametric Amplifier

    Full text link
    Squeezing of the electromagnetic vacuum is an essential metrological technique used to reduce quantum noise in applications spanning gravitational wave detection, biological microscopy, and quantum information science. In superconducting circuits, the resonator-based Josephson-junction parametric amplifiers conventionally used to generate squeezed microwaves are constrained by a narrow bandwidth and low dynamic range. In this work, we develop a dual-pump, broadband Josephson traveling-wave parametric amplifier that combines a phase-sensitive extinction ratio of 56 dB with single-mode squeezing on par with the best resonator-based squeezers. We also demonstrate two-mode squeezing at microwave frequencies with bandwidth in the gigahertz range that is almost two orders of magnitude wider than that of contemporary resonator-based squeezers. Our amplifier is capable of simultaneously creating entangled microwave photon pairs with large frequency separation, with potential applications including high-fidelity qubit readout, quantum illumination and teleportation

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    MPI of SuperSPIO20-labeled ALS patient-derived, genome-edited iPSCs and iPSC-derived motor neurons

    No full text
    Genome-edited induced pluripotent stem cells (iPSCs), iPSC-derived neural precursor cells (NPCs) and iPSC-derived motorneurons (MNs) have shown considerable potential for neurorepair in transgenic amyotrophic lateral sclerosis (ALS) rodent models.When pursuing mutant gene-edited iPSC cell therapy in patients, it is highly desirable to have non-invasive imaging techniquesavailable that can report longitudinally on the fate of transplanted cells. With magnetic particle imaging (MPI), one can visualize andquantify the distribution of superparamagnetic iron oxide (SPIO)-labeled stem cells in the body. Here, we report an optimized magneticlabeling protocol for MPI tracking of gene-edited iPSCs and iPSC-derived MNs. We used SuperSPIO20® and Resovist® for celllabeling and found that the MPI performance of SuperSPIO20® is about 20% higher than that for Resovist® when it comes to imagingof labeled cells. Furthermore, we compared the detection sensitivity of MPI with T2-W MRI and concluded that MPI has at least10-fold higher sensitivity in cell detection

    Limited disease progression in endocrine surgery patients with treatment delays due to COVID-19.

    No full text
    BackgroundThe COVID-19 pandemic profoundly impacted the delivery of care and timing of elective surgical procedures. Most endocrine-related operations were considered elective and safe to postpone, providing a unique opportunity to assess clinical outcomes under protracted treatment plans.MethodsAmerican Association of Endocrine Surgeon members were surveyed for participation. A Research Electronic Data Capture survey was developed and distributed to 27 institutions to assess the impact of COVID-19-related delays. The information collected included patient demographics, primary diagnosis, resumption of care, and assessment of disease progression by the surgeon.ResultsTwelve out of 27 institutions completed the survey (44.4%). Of 850 patients, 74.8% (636) were female; median age was 56 (interquartile range, 44-66) years. Forty percent (34) of patients had not been seen since their original surgical appointment was delayed; 86.2% (733) of patients had a delay in care with women more likely to have a delay (87.6% vs 82.2% of men, χ2 = 3.84, P = .05). Median duration of delay was 70 (interquartile range, 42-118) days. Among patients with a delay in care, primary disease site included thyroid (54.2%), parathyroid (37.2%), adrenal (6.5%), and pancreatic/gastrointestinal neuroendocrine tumors (1.3%). In addition, 4.0% (26) of patients experienced disease progression and 4.1% (24) had a change from the initial operative plan. The duration of delay was not associated with disease progression (P = .96) or a change in operative plan (P = .66).ConclusionAlthough some patients experienced disease progression during COVID-19 delays to endocrine disease-related care, most patients with follow-up did not. Our analysis indicated that temporary delay may be an acceptable course of action in extreme circumstances for most endocrine-related surgical disease
    corecore