28 research outputs found

    Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL)

    Get PDF
    The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump-probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC

    Transport Properties of Holographic Defects

    Full text link
    We study the charge transport properties of fields confined to a (2+1)-dimensional defect coupled to (3+1)-dimensional super-Yang-Mills at large-\nc and strong coupling, using AdS/CFT techniques applied to linear response theory. The dual system is described by \nf probe D5- or D7-branes in the gravitational background of \nc black D3-branes. Surprisingly, the transport properties of both defect CFT's are essentially identical -- even though the D7-brane construction breaks all supersymmetries. We find that the system possesses a conduction threshold given by the wave-number of the perturbation and that the charge transport arises from a quasiparticle spectrum which is consistent with an intuitive picture where the defect acquires a finite width. We also examine finite-λ\lambda modifications arising from higher derivative interactions in the probe brane action.Comment: 54 pages, 22 figures, references added, minor changes to figures and comments, final version published in JHE

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    The transformation of diamond to graphite: Experiments reveal the presence of an intermediate linear carbon phase

    No full text
    Natural diamonds that have been partially replaced by graphite have been observed to occur in natural rocks. While the graphite-to-diamond phase transition has been extensively studied the opposite of this (diamond to graphite) remains poorly understood. We performed high-pressure and temperature hydrous and anhydrous experiments up to 1.0 GPa and 1300 °C using Amplex premium virgin synthetic diamonds (20–40 μm size) as the starting material mixed with Mg(OH) as a source of HO for the hydrous experiments. The experiments revealed that the diamond-to-graphite transformation at P = 1.0 GPa and T = 1300 °C was triggered by the presence of HO and was accomplished through a three-stage process. Stage 1: diamond reacts with a supercritical HO producing an intermediate 200–500 nm size “globular carbon” phase. This phase is a linear carbon chain; i.e. a polyyne or carbyne. Stage 2: the linear carbon chains are unstable and highly reactive, and they decompose by zigzagging and cross-linking to form sp-hybridized structures. Stage 3: normal, disordered, and onion-like graphite is produced by the decomposition of the sp-hybridized carbon chains which are re-organized into sp bonds. Our experiments show that there is no direct transformation from sp C-bonds into sp C-bonds. Our hydrous high-pressure and high-temperature experiments show that the diamond-to-graphite transformation requires an intermediate metastable phase of a linear hydrocarbon. This process also provides a simple mechanism for the substitution of other elements into the graphite structure (e.g. H, S, O)

    Compression-rate dependence of pressure-induced phase transitions in Bi.

    No full text
    It is qualitatively well known that kinetics related to nucleation and growth can shift apparent phase boundaries from their equilibrium value. In this work, we have measured this effect in Bi using time-resolved X-ray diffraction with unprecedented 0.25 ms time resolution, accurately determining phase transition pressures at compression rates spanning five orders of magnitude (10-2-103 GPa/s) using the dynamic diamond anvil cell. An over-pressurization of the Bi-III/Bi-V phase boundary is observed at fast compression rates for different sample types and stress states, and the largest over-pressurization that is observed is ΔP = 2.5 GPa. The work presented here paves the way for future studies of transition kinetics at previously inaccessible compression rates
    corecore