10 research outputs found

    Vibrations and Berry Phases of Charged Buckminsterfullerene

    Full text link
    A simple model of electron-vibron interactions in buckminsterfullerene ions is solved semiclassically. Electronic degeneracies of C60_{60}n^{n-} induce dynamical Jahn-Teller distortions, which are unimodal for n ⁣ ⁣3n\!\ne\!3 and bimodal for n ⁣= ⁣3n\!=\!3. The quantization of motion along the Jahn-Teller manifold leads to a symmetric-top rotator Hamiltonian. I find Molecular Aharonov-Bohm effects where electronic Berry phases determine the vibrational spectra, zero point fluctuations, and electrons' pair binding energies. The latter are relevant to superconductivity in alkali-fullerenes.Comment: Latex 11 pages. IIT-00

    Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays

    Get PDF
    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD10 values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD10 were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicit

    Dynamical Jahn-Teller Effect and Berry Phase in Positively Charged Fullerene I. Basic Considerations

    Full text link
    We study the Jahn-Teller effect of positive fullerene ions 2^2C60+_{60}^{+} and 1^1C602+_{60}^{2+}. The aim is to discover if this case, in analogy with the negative ion, possesses a Berry phase or not, and what are the consequences on dynamical Jahn-Teller quantization. Working in the linear and spherical approximation, we find no Berry phase in 1^1C602+_{60}^{2+}, and presence/absence of Berry phase for coupling of one L=2L=2 hole to an L=4L=4/L=2L=2 vibration. We study in particular the special equal-coupling case (g2=g4g_2=g_4), which is reduced to the motion of a particle on a 5-dimensional sphere. In the icosahedral molecule, the final outcome assesses the presence/absence of a Berry phase of π\pi for the huh_u hole coupled to GgG_g/HhH_h vibrations. Some qualitative consequences on ground-state symmetry, low-lying excitations, and electron emission from C60_{60} are spelled out.Comment: 31 pages (RevTeX), 3 Postscript figures (uuencoded

    The Jahn-Teller effect in icosahedral symmetry

    No full text
    The resurgence of interest in properties of molecules of icosahedral symmetry follows the discovery of the C60 molecule. Due to the high symmetry of the icosahedron, almost all the electronic and vibrational levels are highly degenerate, so that in dealing with properties of these systems, the Jahn-Teller interaction must almost always be allowed for. This thesis primarily explores the properties of the icosahedral G ⊗ (g ⊕ h] interaction and related subsystems in the strong coupling régime. Mappings of the adiabatic potential energy surfaces facilitate an analysis of the geometrical phase or Berry phase acquired by the quantal system on transportation around adiabatic circuits in parameter space. The Berry phase information in conjunction with an analysis of tunnelling, determines the properties of the ground state. The use of Ham factors achieves a characterization of the various coupling régimes. However, characterization of G and H Jahn-Teller systems, requires an extension of the standard definition of these Ham factors. In such cases the extended matrix elements between and within vibronic tunnelling sublevels cannot be ignored. A calculation of all the standard and extended matrix elements is presented. A further introduction of a matrix of Ham factors facilitates the description of H multiplicity within an H manifold. Finally, two problems are investigated numerically; aimed at making some allusion towards possible experimental manifestations of G ⊗(g(⊕)h). The first investigation considers the variations in the eigensystem and Ham factors of G ⊗ (g ⊕ h), as a function of the coupling to the two modes. The second investigation considers the structure in the optical absorption line shapes for the transitions from orbital singlet to quartet, G, states in an icosahedral environment. The quartet states are subject to both spin-orbit and linear Jahn-Teller interactions.</p
    corecore