7 research outputs found

    Experimental assessment of inter-centre variation in stopping-power and range prediction in particle therapy

    Get PDF
    Purpose: Experimental assessment of inter-centre variation and absolute accuracy of stopping-power ratio (SPR) prediction within 17 particle therapy centres of the European Particle Therapy Network. Material and methods: A head and body phantom with seventeen tissue-equivalent materials were scanned consecutively at the participating centres using their individual clinical CT scan protocol and translated into SPR with their in-house CT-number-to-SPR conversion. Inter-centre variation and absolute accuracy in SPR prediction were quantified for three tissue groups: lung, soft tissues and bones. The integral effect on range prediction for typical clinical beams traversing different tissues was determined for representative beam paths for the treatment of primary brain tumours as well as lung and prostate cancer. Results: An inter-centre variation in SPR prediction (2 sigma) of 8.7%, 6.3% and 1.5% relative to water was determined for bone, lung and soft-tissue surrogates in the head setup, respectively. Slightly smaller variations were observed in the body phantom (6.2%, 3.1%, 1.3%). This translated into inter-centre variation of integral range prediction (2 sigma) of 2.9%, 2.6% and 1.3% for typical beam paths of prostate-, lung-and primary brain-tumour treatments, respectively. The absolute error in range exceeded 2% in every fourth participating centre. The consideration of beam hardening and the execution of an independent HLUT validation had a positive effect, on average. Conclusion: The large inter-centre variations in SPR and range prediction justify the currently clinically used margins accounting for range uncertainty, which are of the same magnitude as the inter-centre variation. This study underlines the necessity of higher standardisation in CT-number-to-SPR conversion. (C) 2021 The Authors. Published by Elsevier B.V

    The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: Implications for tumour coverage

    No full text
    Purpose: To evaluate against Monte-Carlo the performance of various dose calculations algorithms regarding lung turnout coverage in stereotactic body radiotherapy (SBRT) conditions. Materials and methods: Dose distributions in virtual lung phantoms have been calculated using four commercial Treatment Planning System (TPS) algorithms and one Monte Carlo (MC) system (EGSnrc). We compared the performance of the algorithms in calculating the target dose for different degrees of lung inflation. The phantoms had a cubic 'body' and 'lung' and a central 2-cm diameter spherical 'tumour' (the body and turnout have unit density). The lung tissue was assigned five densities (rho(lung)): 0.01, 0.1, 0.2, 0.4 and 1 g/cm(3). Four-field treatment plans were calculated with 6- and 18 MV narrow beams for each value of rho(lung). We considered the Pencil Beam Convolution (PBCEl) and the Analytical Anisotropic Algorithm (AAA(ECl)) from Varian Eclipse and the Pencil Beam Convolution (PBCOMP) and the Collapsed Cone Convolution (CCCOMP) algorithms from Oncentra MasterPlan. Results: When changing rho(lung) from 0.4 to 0.1 g/cm(3), the MC median target dose decreased from 89.2% to 74.9% for 6 MV and from 83.3% to 61.6% for 18 MV (of dose maximum in the homogenous case at both energies), while for both PB algorithms the median target dose was virtually independent of lung density. Conclusions: Both PB algorithms overestimated the target dose, the overestimation increasing as rho(lung) decreased. Concerning target dose, the AAA(ECl) and CCCOMP algorithms appear to be adequate alternatives to MC. (C) 2009 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and oncology 91 (2009) 405-41
    corecore