290 research outputs found

    Amplitude analysis and the nature of the Zc(3900)

    Get PDF
    The microscopic nature of the XYZ states remains an unsettled topic. We show how a thorough amplitude analysis of the data can help constraining models of these states. Specifically, we consider the case of the Zc(3900) peak and discuss possible scenarios of a QCD state, virtual state, or a kinematical enhancement. We conclude that current data are not precise enough to distinguish between these hypotheses, however, the method we propose, when applied to the forthcoming high-statistics measurements should shed light on the nature of these exotic enhancements.Comment: 14 pages, 10 figures, 3 tables. Version accepted for publication on Phys.Lett.

    On the η\eta and η′\eta' Photoproduction Beam Asymmetry at High Energies

    Get PDF
    We show that, in the Regge limit, beam asymmetries in η\eta and η′\eta' photoproduction are sensitive to hidden strangeness components. Under reasonable assumptions about the couplings we estimate the contribution of the ϕ\phi Regge pole, which is expected to be the dominant hidden strangeness contribution. The ratio of the asymmetries in η′\eta' and η\eta production is estimated to be close to unity in the forward region 0<−t/GeV2≤10 < -t/\text{GeV}^2 \leq 1 at the photon energy Elab=9E_\text{lab} = 9~GeV, relevant for the upcoming measurements at Jefferson Lab.Comment: 9 pages, 4 figure

    Structure of Pion Photoproduction Amplitudes

    Get PDF
    We derive and apply the finite energy sum rules to pion photoproduction. We evaluate the low energy part of the sum rules using several state-of-the-art models. We show how the differences in the low energy side of the sum rules might originate from different quantum number assignments of baryon resonances. We interpret the observed features in the low energy side of the sum rules with the expectation from Regge theory. Finally, we present a model, in terms of a Regge-pole expansion, that matches the sum rules and the high-energy observables.Comment: 19 pages, 15 figures and 4 table

    Determination of the pole position of the lightest hybrid meson candidate

    Get PDF
    Mapping states with explicit gluonic degrees of freedom in the light sector is a challenge, and has led to controversies in the past. In particular, the experiments have reported two different hybrid candidates with spin-exotic signature, pi1(1400) and pi1(1600), which couple separately to eta pi and eta' pi. This picture is not compatible with recent Lattice QCD estimates for hybrid states, nor with most phenomenological models. We consider the recent partial wave analysis of the eta(') pi system by the COMPASS collaboration. We fit the extracted intensities and phases with a coupled-channel amplitude that enforces the unitarity and analyticity of the S-matrix. We provide a robust extraction of a single exotic pi1 resonant pole, with mass and width 1564 +- 24 +- 86 MeV and 492 +- 54 +- 102 MeV, which couples to both eta(') pi channels. We find no evidence for a second exotic state. We also provide the resonance parameters of the a2(1320) and a2'(1700).Comment: 6 pages + 3 pages of supplemental material. Version to appear on Phys.Rev.Let

    Finite-Energy Sum Rules in Eta Photoproduction off the Nucleon

    Get PDF
    The reaction γN→ηN{\gamma}N \to {\eta}N is studied in the high-energy regime (with photon lab energies Eγlab>4E_{\gamma}^{\textrm{lab}} > 4 GeV) using information from the resonance region through the use of finite-energy sum rules (FESR). We illustrate how analyticity allows one to map the t-dependence of the unknown Regge residue functions. We provide predictions for the energy dependence of the beam asymmetry at high energies.Comment: Joint Physics Analysis Cente

    Global analysis of charge exchange meson production at high energies

    Get PDF
    Many experiments that are conducted to study the hadron spectrum rely on peripheral resonance production. Hereby, the rapidity gap allows the process to be viewed as an independent fragmentation of the beam and the target, with the beam fragmentation dominated by production and decays of meson resonances. We test this separation by determining the kinematic regimes that are dominated by factorizable contributions, indicating the most favorable regions to perform this kind of experiments. In doing so, we use a Regge model to analyze the available world data of charge exchange meson production with beam momentum above 5 GeV in the laboratory frame that are not dominated by either pion or Pomeron exchanges. We determine the Regge residues and point out the kinematic regimes which are dominated by factorizable contributions

    NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems

    Get PDF
    We introduce version 3 of NetKet, the machine learning toolbox for many-body quantum physics. NetKet is built around neural-network quantum states and provides efficient algorithms for their evaluation and optimization. This new version is built on top of JAX, a differentiable programming and accelerated linear algebra framework for the Python programming language. The most significant new feature is the possibility to define arbitrary neural network ansätze in pure Python code using the concise notation of machine-learning frameworks, which allows for just-in-time compilation as well as the implicit generation of gradients thanks to automatic differentiation. NetKet 3 also comes with support for GPU and TPU accelerators, advanced support for discrete symmetry groups, chunking to scale up to thousands of degrees of freedom, drivers for quantum dynamics applications, and improved modularity, allowing users to use only parts of the toolbox as a foundation for their own code
    • …
    corecore