27 research outputs found

    Установка для исследования характеристик теплообменного аппарата

    Get PDF
    Приведено обоснование актуальности применения методов интенсификации теплообмена. Спроектирована экспериментальная установка для исследования характеристик теплообменного аппарата. Средствами вычислительной гидродинамики проведено экспериментальное исследование теплоотдачи и гидравлического сопротивления в трубах с проволочными винтовыми вставками и вставками пропеллерного типа. Проведен анализ полученных экспериментальных данных. Получены критериальные зависимости.The substantiation of the relevance of the application of heat exchange intensification methods is given. The experimental installation for research the characteristics of the heat exchanger is designed. With the help of computational fluid dynamics, an experimental study of heat transfer and hydraulic resistance in pipes with wire helical inserts and propeller-type inserts was carried out. The obtained experimental data are analyzed. Criterial dependencies are obtained

    (Sub)populations of extracellular vesicles released by TNF‐α –triggered human endothelial cells promote vascular inflammation and monocyte migration

    No full text
    Substantial research has been devoted to discovering the translational potential of extracellular vesicles (EV) as a reliable liquid biopsy in the diagnosis and monitoring of several life-affecting diseases, including chronic inflammatory diseases (CID). So far, the role of EV in the development of CID remains largely unknown due to the lack of specific tools to separate the disease-associated EV subtypes. Therefore, this study aims to fractionate inflammation-associated EV (sub)populations using a two-step separation strategy based on their size combined with a specific inflammatory marker (ICAM-1) and to unravel their proteome signature and functional integrity at the onset of vascular inflammation. Here, we report that vascular endothelial cells upon inflammation release two heterogeneous size-based populations of EV (EV-10 K and EV-110 K) sharing a cocktail of inflammatory proteins, chemokines, and cytokines (chiefly: ICAM-1, CCL-2, CCL-4, CCL-5, IL-8 and CXCL-10). The co-enrichment of ICAM-1 and classical EV markers within these two size-based populations gave us a promising opportunity to further separate the inflammation-associated EV subpopulations, using an immuno-affinity methodology. Protein profiling of EV subpopulations highlighted that the phenotypic state of inflamed endothelial cells is preferentially mirrored in secreted medium- and large-sized ICAM-1 (+) EV. As functional players, the smaller-sized EV and especially their ICAM-1 (+) EV subpopulation promote the migration of THP-1 monocytes, whereas the large ICAM-1 (+) EV were more potent to induce ICAM-1 expression in recipient endothelial cells. This study provides new insights into the immunomodulatory content of inflammation-associated EV (sub)populations and their functional contributions to the initiation of vascular inflammation (ICAM-1 expression) and monocyte mobilization

    Extracellular Vesicles Work as a Functional Inflammatory Mediator Between Vascular Endothelial Cells and Immune Cells

    No full text
    Extracellular vesicles (EV) mediated intercellular communication between monocytes and endothelial cells (EC) might play a major role in vascular inflammation and atherosclerotic plaque formation during cardiovascular diseases (CVD). While critical involvement of small (exosomes) and large EV (microvesicles) in CVD has recently been appreciated, the pro- and/or anti-inflammatory impact of a bulk EV (exosomes + microvesicles) on vascular cell function as well as their inflammatory capacity are poorly defined. This study aims to unravel the immunomodulatory content of EV bulk derived from control (uEV) and TNF-α induced inflamed endothelial cells (tEV) and to define their capacity to affect the inflammatory status of recipients monocytes (THP-1) and endothelial cells (HUVEC) in vitro. Here, we show that EV derived from inflamed vascular EC were readily taken up by THP-1 and HUVEC. Human inflammation antibody array together with ELISA revealed that tEV contain a pro-inflammatory profile with chemotactic mediators, including intercellular adhesion molecule (ICAM)-1, CCL-2, IL-6, IL-8, CXCL-10, CCL-5, and TNF-α as compared to uEV. In addition, EV may mediate a selective transfer of functional inflammatory mediators to their target cells and modulate them toward either pro-inflammatory (HUVEC) or anti/pro-inflammatory (THP-1) mode. Accordingly, the expression of pro-inflammatory markers (IL-6, IL-8, and ICAM-1) in tEV-treated HUVEC was increased. In the case of THP-1, EC-EV do induce a mixed of pro- and anti-inflammatory response as indicated by the elevated expression of ICAM-1, CCL-4, CCL-5, and CXCL-10 proteins. At the functional level, EC-EV mediated inflammation and promoted the adhesion and migration of THP-1. Taken together, our findings proved that the EV released from inflamed EC were enriched with a cocktail of inflammatory markers, chemokines, and cytokines which are able to establish a targeted cross-talk between EC and monocytes and reprogramming them toward a pro- or anti-inflammatory phenotypes

    Hemoglobin switching in mice carrying the Klf1Nan variant

    No full text
    Haploinsufficiency for transcription factor KLF1 causes a variety of human erythroid phenotypes, such as the In(Lu) blood type, increased HbA2 levels, and hereditary persistence of fetal hemoglobin. Severe dominant congenital dyserythropoietic anemia IV (CDA-IV) (OMIM 613673) is associated with the KLF1 p.E325K variant. CDA-IV patients display ineffective erythropoiesis and hemolysis resulting in anemia, accompanied by persistently high levels of embryonic and fetal hemoglobin. The mouse Nan strain carries a variant in the orthologous residue, KLF1 p.E339D. Klf1Nan causes dominant hemolytic anemia with many similarities to CDA-IV. Here we investigated the impact of Klf1Nan on the developmental expression patterns of the endogenous α-like and β-like globins, and the human β-like globins carried on a HBB locus transgene. We observe that the switch from primitive, yolk sac-derived, erythropoiesis to definitive, fetal liver-derived, erythropoiesis is delayed in Klf1wt/Nan embryos. This is reflected in globin expression patterns measured between embryonic day 12.5 (E12.5) and E14.5. Cultured Klf1wt/Nan E12.5 fetal liver cells display growth- and differentiation defects. These defects likely contribute to the delayed appearance of definitive erythrocytes in the circulation of Klf1wt/Nan embryos. After E14.5, expression of the embryonic/fetal globin genes is silenced rapidly. In adult Klf1wt/Nan animals, silencing of the embryonic/fetal globin genes is impeded, but only minute amounts are expressed. Thus, in contrast to human KLF1 p.E325K, mouse KLF1 p.E339D does not lead to persistent high levels of embryonic/fetal globins. Our results support the notion that KLF1 affects gene expression in a variant-specific manner, highlighting the necessity to characterize KLF1 variant-specific phenotypes of patients in detail

    Data_Sheet_1_Extracellular Vesicles Work as a Functional Inflammatory Mediator Between Vascular Endothelial Cells and Immune Cells.docx

    No full text
    <p>Extracellular vesicles (EV) mediated intercellular communication between monocytes and endothelial cells (EC) might play a major role in vascular inflammation and atherosclerotic plaque formation during cardiovascular diseases (CVD). While critical involvement of small (exosomes) and large EV (microvesicles) in CVD has recently been appreciated, the pro- and/or anti-inflammatory impact of a bulk EV (exosomes + microvesicles) on vascular cell function as well as their inflammatory capacity are poorly defined. This study aims to unravel the immunomodulatory content of EV bulk derived from control (uEV) and TNF-α induced inflamed endothelial cells (tEV) and to define their capacity to affect the inflammatory status of recipients monocytes (THP-1) and endothelial cells (HUVEC) in vitro. Here, we show that EV derived from inflamed vascular EC were readily taken up by THP-1 and HUVEC. Human inflammation antibody array together with ELISA revealed that tEV contain a pro-inflammatory profile with chemotactic mediators, including intercellular adhesion molecule (ICAM)-1, CCL-2, IL-6, IL-8, CXCL-10, CCL-5, and TNF-α as compared to uEV. In addition, EV may mediate a selective transfer of functional inflammatory mediators to their target cells and modulate them toward either pro-inflammatory (HUVEC) or anti/pro-inflammatory (THP-1) mode. Accordingly, the expression of pro-inflammatory markers (IL-6, IL-8, and ICAM-1) in tEV-treated HUVEC was increased. In the case of THP-1, EC-EV do induce a mixed of pro- and anti-inflammatory response as indicated by the elevated expression of ICAM-1, CCL-4, CCL-5, and CXCL-10 proteins. At the functional level, EC-EV mediated inflammation and promoted the adhesion and migration of THP-1. Taken together, our findings proved that the EV released from inflamed EC were enriched with a cocktail of inflammatory markers, chemokines, and cytokines which are able to establish a targeted cross-talk between EC and monocytes and reprogramming them toward a pro- or anti-inflammatory phenotypes.</p

    軸對稱潛體受襟翼作用下垂向運動性能之探討

    No full text
    The DELTA like-4 ligand (DLL4) belongs to the highly conserved NOTCH family and is specifically expressed in the endothelium. DLL4 regulates crucial processes in vascular growth, including endothelial cell (EC) sprouting and arterial specification. Its expression is increased by VEGF-A. In the present study, we show that VEGF-induced DLL4 expression depends on NOTCH activation. VEGF-induced DLL4 expression was prevented by the blockage of NOTCH signaling with γ-secretase or ADAM inhibitors in human cardiac microvascular ECs. Similar to VEGF-A, recombinant DLL4 itself stimulated NOTCH signaling and resulted in up-regulation of DLL4, suggesting a positive feed-forward mechanism. These effects were abrogated by NOTCH inhibitors but not by inhibition of VEGF signaling. NOTCH activation alone suffices to induce DLL4 expression as illustrated by the positive effect of NOTCH intracellular domain (NICD)-1 or -4 overexpression. To discriminate between NICD/RBP-Jκ and FOXC2-regulated DLL4 expression, DLL4 promoter activity was assessed in promoter deletion experiments. NICD induced promoter activity was dependent on RBP-Jκ site but independent of the FOXC2 binding site. Accordingly, constitutively active FOXC2 did not affect DLL4 expression. The notion that the positive feed-forward mechanism might propagate NOTCH activation to neighboring ECs was supported by our observation that DLL4-eGFP-transfected ECs induced DLL4 expression in nontransfected cells in their vicinity. In summary, our data provide evidence for a mechanism by which VEGF or ligand-induced NOTCH signaling up-regulates DLL4 through a positive feed-forward mechanism. By this mechanism, DLL4 could propagate its own expression and enable synchronization of NOTCH expression and signaling between ECs
    corecore