2,291 research outputs found

    The Coldest Place in the Universe: Probing the Ultra-Cold Outflow and Dusty Disk in the Boomerang Nebula

    Get PDF
    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the Universe, with a massive high-speed outflow that has cooled significantly below the cosmic background temperature. Our new CO 1-0 data reveal heretofore unseen distant regions of this ultra-cold outflow, out to 120,000\gtrsim120,000 AU. We find that in the ultra-cold outflow, the mass-loss rate (dM/dt) increases with radius, similar to its expansion velocity (VV) - taking VrV\propto r, we find dM/dtr0.92.2dM/dt \propto r^{0.9-2.2}. The mass in the ultra-cold outflow is 3.3\gtrsim3.3 Msun, and the Boomerang's main-sequence progenitor mass is 4\gtrsim4 Msun. Our high angular resolution (\sim0".3) CO J=3-2 map shows the inner bipolar nebula's precise, highly-collimated shape, and a dense central waist of size (FWHM) \sim1740 AU×275\times275 AU. The molecular gas and the dust as seen in scattered light via optical HST imaging show a detailed correspondence. The waist shows a compact core in thermal dust emission at 0.87-3.3 mm, which harbors (47)×104(4-7)\times10^{-4} Msun~of very large (\simmm-to-cm sized), cold (2030\sim20-30 K) grains. The central waist (assuming its outer regions to be expanding) and fast bipolar outflow have expansion ages of 1925\lesssim1925 yr and 1050\le1050 yr: the "jet-lag" (i.e., torus age minus the fast-outflow age) in the Boomerang supports models in which the primary star interacts directly with a binary companion. We argue that this interaction resulted in a common-envelope configuration while the Boomerang's primary was an RGB or early-AGB star, with the companion finally merging into the primary's core, and ejecting the primary's envelope that now forms the ultra-cold outflow.Comment: accepted ApJ, 12 Apr, 201

    A New Component in the Radio Continua of PNe

    Get PDF
    A byproduct of experiments designed to map the CMB is the recent detection of a new component of foreground galactic emission. The anomalous foreground at 10–30 GHz, unexplained by traditional emission mechanisms, correlates with 100 mum dust emission, and is thus presumably due to dust.Is the anomalous foreground ubiquitous in the Galaxy? I will present evidence obtained with the CBI and SIMBA+SEST supporting the existence of the new component in the ISM at large, and in specific objects, in the form of a 31 GHz excess over free-free emission in PNe

    The evolutionary state of the southern dense core Cha-MMS1

    Get PDF
    Aims: Our goal is to set constraints on the evolutionary state of the dense core Cha-MMS1 in the Chamaeleon I molecular cloud. Methods: We analyze molecular line observations carried out with the new submillimeter telescope APEX. We look for outflow signatures around the dense core and probe its chemical structure, which we compare to predictions of models of gas-phase chemistry. We also use the public database of the Spitzer Space Telescope (SST) to compare Cha-MMS1 with the two Class 0 protostars IRAM 04191 and L1521F, which are at the same distance. Results: We measure a large deuterium fractionation for N2H+ (11 +/- 3 %), intermediate between the prestellar core L1544 and the very young Class 0 protostar L1521F. It is larger than for HCO+ (2.5 +/- 0.9 %), which is probably the result of depletion removing HCO+ from the high-density inner region. Our CO(3-2) map reveals the presence of a bipolar outflow driven by the Class I protostar Ced 110 IRS 4 but we do not find evidence for an outflow powered by Cha-MMS1. We also report the detection of Cha-MMS1 at 24, 70 and 160 microns by the instrument MIPS of the SST, at a level nearly an order of magnitude lower than IRAM 04191 and L1521F. Conclusions: Cha-MMS1 appears to have already formed a compact object, either the first hydrostatic core at the very end of the prestellar phase, or an extremely young protostar that has not yet powered any outflow, at the very beginning of the Class 0 accretion phase.Comment: Accepted by Astronomy & Astrophysics as a letter, to appear in the special issue on the APEX first result

    The Sunyaev-Zeldovich Effect at 1 and 2 mm towards ROSAT Clusters

    Get PDF
    An observing campaign was devoted to the search for the Sunyaev-Zeldovich (S-Z) effect towards X-ray ROSAT Clusters in the millimetric spectral domain. A double channel (1.2 and 2 {\it mm}) photometer was installed at the focus of the 15m Swedish ESO Submillimeter Telescope (SEST) in Chile in september 1994 and 1995 and observations of the targets S1077, A2744, S295 and RXJ0658-5557 were gathered. Detections were found for A2744 at 1 {\it mm} and in both channels (at 1.2 and 2 {\it mm}) towards RXJ0658-5557. For the first time there is evidence for the S-Z enhancement and both the latter and the decrement were detected on the same source. We discuss astrophysical and systematic effects which could give origin to these signals.Comment: 6 pg Latex file (style file included) including 1 ps figure, XVIth Moriond Astrophysics Meeting "The Anisotropies of the Cosmic Microwave Background", Les Arcs, Savoie-France, March 16-23 199

    Anomalous radio emission from dust in the Helix

    Full text link
    A byproduct of experiments designed to map the CMB is the recent detection of a new component of foreground Galactic emission. The anomalous foreground at ~ 10--30 GHz, unexplained by traditional emission mechanisms, correlates with 100um dust emission. We report that in the Helix the emission at 31 GHz and 100um are well correlated, and exhibit similar features on sky images, which are absent in H\beta. Upper limits on the 250 GHz continuum emission in the Helix rule out cold grains as candidates for the 31 GHz emission, and provide spectroscopic evidence for an excess at 31 GHz over bremsstrahlung. We estimate that the 100um-correlated radio emission, presumably due to dust, accounts for at least 20% of the 31 GHz emission in the Helix. This result strengthens previous tentative interpretations of diffuse ISM spectra involving a new dust emission mechanism at radio frequencies. Very small grains have not been detected in the Helix, which hampers interpreting the new component in terms of spinning dust. The observed iron depletion in the Helix favors considering the identity of this new component to be magnetic dipole emission from hot ferromagnetic grains. The reduced level of free-free continuum we report also implies an electronic temperature of Te=4600\pm1200K for the free-free emitting material, which is significantly lower than the temperature of 9500\pm500K inferred from collisionally-excited lines (abridged).Comment: Accepted for publication in Ap

    Molecular abundances in carbon-rich circumstellar envelopes

    Get PDF
    We present a millimetre molecular line survey of seven high mass loss rate carbon stars in both the northern and southern skies. A total of 196 emission lines (47 transitions) from 24 molecular species were detected. The observed CO emission is used to determine mass-loss rates and the physical structure of the circumstellar envelope, such as the density and temperature structure, using a detailed radiative transfer analysis. This enables abundances for the remaining molecular species to be determined. The derived abundances generally vary between the sources by no more than a factor of five indicating that circumstellar envelopes around carbon stars with high mass-loss rates have similar chemical compositions. However, there are some notable exceptions. The most striking difference between the abundances are reflecting the spread in the 12C/13C-ratio of about an order of magnitude between the sample stars, mainly reflecting the results of nucleosynthesis. The abundance of SiO also shows a variation of more than an order of magnitude between the sources and is on the average more than an order of magnitude more abundant than predicted from photospheric chemistry in thermal equilibrium. The over abundance of SiO is consistent with dynamical modelling of the stellar atmosphere and the inner parts of the wind where a pulsation-driven shock has passed. This scenario is possibly further substantiated by the relatively low amount of CS present in the envelopes. The chemistry occurring in the outer envelope is consistent with current photochemical models.Comment: 33 pages, 17 figures, A&A accepte
    corecore