20 research outputs found

    Dual Requirement for Yeast hnRNP Nab2p in mRNA poly(A) Tail Length Control and Nuclear Export

    Get PDF
    Recent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3′‐end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)‐binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)+ RNA but, in contrast to mRNA export mutants, these defects can be uncoupled in a nab2 mutant strain. Previous studies have implicated the cytoplasmic poly(A) tail‐binding protein Pab1p in poly(A) tail length control during polyadenylation. Although cells are viable in the absence of NAB2 expression when PAB1 is overexpressed, Pab1p fails to resolve the nab2Δ hyperadenylation defect even when Pab1p is tagged with a nuclear localization sequence and targeted to the nucleus. These results indicate that Nab2p is essential for poly(A) tail length control in vivo, and we demonstrate that Nab2p activates polyadenylation, while inhibiting hyperadenylation, in the absence of Pab1p in vitro. We propose that Nab2p provides an important link between the termination of mRNA polyadenylation and nuclear export

    A Randomized Trial of the Optimum Duration of Acoustic Pulse Thrombolysis Procedure in Acute Intermediate-Risk Pulmonary Embolism: The OPTALYSE PE Trial.

    Get PDF
    The aim of this study was to determine the lowest optimal tissue plasminogen activator (tPA) dose and delivery duration using ultrasound-facilitated catheter-directed thrombolysis (USCDT) for the treatment of acute intermediate-risk (submassive) pulmonary embolism.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site

    Additional file 1: Figure S1. of Pathogenic variant burden in the ExAC database: an empirical approach to evaluating population data for clinical variant interpretation

    No full text
    Histograms of the allele counts of NMDpositive variants in the ExAC dataset for (A) BRCA1 and (B) BRCA2. x-axis: allele count; y-axis: number of unique sequence variants. The solid portion represents variants that have been reported in ClinVar, and the shaded portion represents those that are absent from ClinVar. (PNG 40 kb

    The Role of Molecular Genetic Analysis in the Diagnosis of Primary Ciliary Dyskinesia

    No full text
    Rationale: Primary ciliary dyskinesia (PCD) is an autosomal recessive genetic disorder of motile cilia. The diagnosis of PCD has previously relied on ciliary analysis with transmission electron microscopy or video microscopy. However, patients with PCD may have normal ultrastructural appearance, and ciliary analysis has limited accessibility. Alternatively, PCD can be diagnosed by demonstrating biallelic mutations in known PCD genes. Genetic testing is emerging as a diagnostic tool to complement ciliary analysis where interpretation and access may delay diagnosis. Objectives: To determine the diagnostic yield of genetic testing of patients with a confirmed or suspected diagnosis of PCD in a multiethnic urban center. Methods: Twenty-eight individuals with confirmed PCD on transmission electron microscopy of ciliary ultrastructure and 24 individuals with a probable diagnosis of PCD based on a classical PCD phenotype and low nasal nitric oxide had molecular analysis of 12 genes associated with PCD. Results: Of 49 subjects who underwent ciliary biopsy, 28 (57%) were diagnosed with PCD through an ultrastructural defect. Of the 52 individuals who underwent molecular genetic analysis, 22 (42%) individuals had two mutations in known PCD genes. Twenty-four previously unreported mutations in known PCD genes were observed. Combining both diagnostic modalities of biopsy and molecular genetics, the diagnostic yield increased to 69% compared with 57% based on biopsy alone. Conclusions: The diagnosis of PCD is challenging and has traditionally relied on ciliary biopsy, which is unreliable as the sole criterion for a definitive diagnosis. Molecular genetic analysis can be used as a complementary test to increase the diagnostic yield
    corecore