44 research outputs found

    Natural immunity to salmonella in humans

    Get PDF
    Background: Salmonella bacteraemia is an important public health problem in children from sub Saharan Africa (SSA). Understanding what constitutes natural acquired immunity to Salmonella is crucial for the development of Salmonella vaccine. It was hypothesized that natural Salmonella exposure within the GIT and peripheral blood induces the generation of specific-antibodies and T cells and these might provide protection to subsequent Salmonella infection. Methods: Natural acquisition of antibody and T cell immunity to Salmonella was investigated in healthy and Salmonella infected Malawian children. Acquisition of typhoid vaccine induced T cell immunity in healthy adults from the United Kingdom (UK) was investigated to model natural immunizing events occurring within the gut associated lymphoid tissues (GALTs) following Salmonella infection. Acquisition of immunity was examined using immunological tools including the intra-cellular cytokine staining assay (ICS), serum bactericidal activity (SBA) assay, ELISA and ELISpot. Exposure to Salmonella was examined using microbiological tools including standard culture and real-time PCR. Principal findings: CD4+ T cells and IgG antibodies to Salmonella develops sequentially in under-five children. Acquisition of Salmonella-specific CD4+ T cells and antibodies coincides with the decline in S. Typhimurium bacteraemia cases in older children. As much as 47% of Malawian children (aged 6-18 months) are exposed to Salmonella at least once within the gastrointestinal tract (GIT). Natural Salmonella exposure within the GIT is associated with development of potentially protective SBA in children. Invasive Salmonella infection elicits an increase in generation of Salmonella-specific CD4+T cells, IgG and IgA antibody secreting cells (ASC). Oral Ty21a vaccination (model of natural Salmonella infection) did not elicit an increase in generation of both CD4+Cytokine+ and CD8+Cytokine+ T cells in the peripheral blood and gut mucosa compartments at day 11, and day 18 post vaccination. Conclusion: Young children

    Early Interferon-γ Production in Human Lymphocyte Subsets in Response to Nontyphoidal Salmonella Demonstrates Inherent Capacity in Innate Cells

    Get PDF
    Background Nontyphoidal Salmonellae frequently cause life-threatening bacteremia in sub-Saharan Africa. Young children and HIV-infected adults are particularly susceptible. High case-fatality rates and increasing antibiotic resistance require new approaches to the management of this disease. Impaired cellular immunity caused by defects in the T helper 1 pathway lead to intracellular disease with Salmonella that can be countered by IFNγ administration. This report identifies the lymphocyte subsets that produce IFNγ early in Salmonella infection. Methodology Intracellular cytokine staining was used to identify IFNγ production in blood lymphocyte subsets of ten healthy adults with antibodies to Salmonella (as evidence of immunity to Salmonella), in response to stimulation with live and heat-killed preparations of the D23580 invasive African isolate of Salmonella Typhimurium. The absolute number of IFNγ-producing cells in innate, innate-like and adaptive lymphocyte subpopulations was determined. Principal Findings Early IFNγ production was found in the innate/innate-like lymphocyte subsets: γδ-T cells, NK cells and NK-like T cells. Significantly higher percentages of such cells produced IFNγ compared to adaptive αβ-T cells (Student's t test, P<0.001 and ≤0.02 for each innate subset compared, respectively, with CD4+- and CD8+-T cells). The absolute numbers of IFNγ-producing cells showed similar differences. The proportion of IFNγ-producing γδ-T cells, but not other lymphocytes, was significantly higher when stimulated with live compared with heat-killed bacteria (P<0.0001). Conclusion/Significance Our findings indicate an inherent capacity of innate/innate-like lymphocyte subsets to produce IFNγ early in the response to Salmonella infection. This may serve to control intracellular infection and reduce the threat of extracellular spread of disease with bacteremia which becomes life-threatening in the absence of protective antibody. These innate cells may also help mitigate against the effect on IFNγ production of depletion of Salmonella-specific CD4+-T lymphocytes in HIV infection

    A fast extraction-free isothermal LAMP assay for detection of SARS-CoV-2 with potential use in resource-limited settings

    Get PDF
    BACKGROUND: To retain the spread of SARS-CoV-2, fast, sensitive and cost-effective testing is essential, particularly in resource limited settings (RLS). Current standard nucleic acid-based RT-PCR assays, although highly sensitive and specific, require transportation of samples to specialised laboratories, trained staff and expensive reagents. The latter are often not readily available in low- and middle-income countries and this may significantly impact on the successful disease management in these settings. Various studies have suggested a SARS-CoV-2 loop mediated isothermal amplification (LAMP) assay as an alternative method to RT-PCR. METHODS: Four previously published primer pairs were used for detection of SARS-CoV-2 in the LAMP assay. To determine optimal conditions, different temperatures, sample input and incubation times were tested. Ninety-three extracted RNA samples from St. George's Hospital, London, 10 non-extracted nasopharyngeal swab samples from Great Ormond Street Hospital for Children, London, and 92 non-extracted samples from Queen Elisabeth Central Hospital (QECH), Malawi, which have previously been tested for SARS-Cov-2 by quantitative reverse-transcription RealTime PCR (qRT-PCR), were analysed in the LAMP assay. RESULTS: In this study we report the optimisation of an extraction-free colourimetric SARS-CoV-2 LAMP assay and demonstrated that a lower limit of detection (LOD) between 10 and 100 copies/µL of SARS-CoV-2 could be readily detected by a colour change of the reaction within as little as 30 min. We further show that this assay could be quickly established in Malawi, as no expensive equipment is necessary. We tested 92 clinical samples from QECH and showed the sensitivity and specificity of the assay to be 86.7% and 98.4%, respectively. Some viral transport media, used routinely to stabilise RNA in clinical samples during transportation, caused a non-specific colour-change in the LAMP reaction and therefore we suggest collecting samples in phosphate buffered saline (which did not affect the colour) as the assay allows immediate sample analysis on-site. CONCLUSION: SARS-CoV-2 LAMP is a cheap and reliable assay that can be readily employed in RLS to improve disease monitoring and management

    Loss of Humoral and Cellular Immunity to Invasive Nontyphoidal Salmonella During Current or Convalescent Plasmodium falciparum Infection in Malawian Children.

    Get PDF
    Invasive nontyphoidal Salmonella (iNTS) infections are commonly associated with Plasmodium falciparum infections, but the immunologic basis for this linkage is poorly understood. We hypothesized that P. falciparum infection compromises the hosts' humoral and cellular immunity to NTS which increases their susceptibility to iNTS infection. We prospectively recruited children aged between 6 and 60 months at a Community Health Centre in Blantyre, Malawi and allocated them to the following groups; febrile with uncomplicated malaria, febrile malaria-negative, non-febrile malaria-negative. S Typhimurium (STm)-specific; serum bactericidal activity (SBA) and blood bactericidal activity (WBBA), complement C3 deposition and neutrophil respiratory burst activity (NRBA) were measured. SBA to STm was reduced in febrile P. falciparum infected (Median -0.201og10, IQR [-1.85, 0.32]) compared to non-febrile malaria-negative (Median -1.42log10, IQR [-2.0, -0.47], p=0.052). In relation to SBA, C3 deposition on STm was significantly reduced in febrile P. falciparum infected (Median 7.5%, IQR [4.1, 15.0]) compared to non-febrile malaria-negative (Median 29%, IQR [11.8, 48.0], p=0.048). WBBA to STm was significantly reduced in febrile P. falciparum infected (Median 0.25log10, IQR [-0.73, 1.13], p=0.0001) compared to non-febrile malaria-negative (Median -1.0log10, IQR [-1.68, -0.16]). In relation to WBBA, STm-specific NRBA was reduced in febrile P. falciparum infected (Median 8.8% IQR [3.7, 20], p=0.0001) compared to non-febrile malaria-negative (Median 40.5% IQR [33, 65.8]). P. falciparum infection impairs humoral and cellular immunity to STm in children during malaria episodes, which may explain the increased risk of iNTS observed in children from malaria endemic settings. The mechanisms underlying humoral immunity impairment are incompletely understood and should be explored further

    Ascertaining the burden of invasive Salmonella disease in hospitalised febrile children aged under four years in Blantyre, Malawi.

    Get PDF
    Typhoid fever is endemic across sub-Saharan Africa. However, estimates of the burden of typhoid are undermined by insufficient blood volumes and lack of sensitivity of blood culture. Here, we aimed to address this limitation by exploiting pre-enrichment culture followed by PCR, alongside routine blood culture to improve typhoid case detection. We carried out a prospective diagnostic cohort study and enrolled children (aged 0-4 years) with non-specific febrile disease admitted to a tertiary hospital in Blantyre, Malawi from August 2014 to July 2016. Blood was collected for culture (BC) and real-time PCR after a pre-enrichment culture in tryptone soy broth and ox-bile. DNA was subjected to PCR for invA (Pan-Salmonella), staG (S. Typhi), and fliC (S. Typhimurium) genes. A positive PCR was defined as invA plus either staG or fliC (CT<29). IgM and IgG ELISA against four S. Typhi antigens was also performed. In total, 643 children (median age 1.3 years) with nonspecific febrile disease were enrolled; 31 (4.8%) were BC positive for Salmonella (n = 13 S. Typhi, n = 16 S. Typhimurium, and n = 2 S. Enteritidis). Pre-enrichment culture of blood followed by PCR identified a further 8 S. Typhi and 15 S. Typhimurium positive children. IgM and IgG titres to the S. Typhi antigen STY1498 (haemolysin) were significantly higher in children that were PCR positive but blood culture negative compared to febrile children with all other non-typhoid illnesses. The addition of pre-enrichment culture and PCR increased the case ascertainment of invasive Salmonella disease in children by 62-94%. These data support recent burden estimates that highlight the insensitivity of blood cultures and support the targeting of pre-school children for typhoid vaccine prevention in Africa. Blood culture with real-time PCR following pre-enrichment should be used to further refine estimates of vaccine effectiveness in typhoid vaccine trials

    The ability of Interleukin–10 to negate haemozoin-related pro-inflammatory effects has the potential to restore impaired macrophage function associated with malaria infection

    Get PDF
    Background: Although pro-inflammatory cytokines are involved in the clearance of Plasmodium falciparum during the early stages of the infection, increased levels of these cytokines have been implicated in the pathogenesis of severe malaria. Amongst various parasite-derived inducers of inflammation, the malarial pigment haemozoin (Hz), which accumulates in monocytes, macrophages and other immune cells during infection, has been shown to significantly contribute to dysregulation of the normal inflammatory cascades. Methods: The direct effect of Hz-loading on cytokine production by monocytes and the indirect effect of Hz on cytokine production by myeloid cells was investigated during acute malaria and convalescence using archived plasma samples from studies investigating P. falciparum malaria pathogenesis in Malawian subjects. Further, the possible inhibitory effect of IL-10 on Hz-loaded cells was examined, and the proportion of cytokine-producing T-cells and monocytes during acute malaria and in convalescence was characterized. Results: Hz contributed towards an increase in the production of inflammatory cytokines, such as Interferon Gamma (IFN-γ), Tumor Necrosis Factor (TNF) and Interleukin 2 (IL-2) by various cells. In contrast, the cytokine IL-10 was observed to have a dose-dependent suppressive effect on the production of TNF among other cytokines. Cerebral malaria (CM) was characterized by impaired monocyte functions, which normalized in convalescence. CM was also characterized by reduced levels of IFN-γ-producing T cell subsets, and reduced expression of immune recognition receptors HLA-DR and CD 86, which also normalized in convalescence. However, CM and other clinical malaria groups were characterized by significantly higher plasma levels of pro-inflammatory cytokines than healthy controls, implicating anti-inflammatory cytokines in balancing the immune response. Conclusions: Acute CM was characterized by elevated plasma levels of pro-inflammatory cytokines and chemokines but lower proportions of cytokine-producing T-cells and monocytes that normalize during convalescence. IL-10 is also shown to have the potential to indirectly prevent excessive inflammation. Cytokine production dysregulated by the accumulation of Hz appears to impair the balance of the immune response to malaria and exacerbates pathology

    Performance of molecular methods for the detection of Salmonella in human stool specimens

    Get PDF
    Background: The relationship between asymptomatic Salmonella exposure within the gastrointestinal tract and Salmonella bacteraemia is poorly understood, in part due to the low sensitivity of stool culture and the lack of validated molecular diagnostic tests for the detection of Salmonella in the stool. The study aimed to determine a reliable molecular diagnostic test for Salmonella in stool specimens. Methods: : We optimised an in-house monoplex real-time polymerase chain reaction (PCR) for the detection of Salmonella ttr and InvA genes in stool by including a selenite broth pre-culture step for Salmonella before DNA extraction and validated their specificity against other local common pathogens. Then we assessed their performance against a well-validated multiplex PCR targeting the same ttr and InvA genes and against stool culture using clinical stool specimens collected from a cohort of 50 asymptomatic healthy Malawian children that were sampled at 1-month intervals over 12 months. We employed a latent Markov model to estimate the specificities and sensitivities of PCR methods. Results: Ttr and InvA primers were both able to detect all the different Salmonella serovars tested and had superior limits of detection when DNA was extracted after selenite pre-culture. T tr sensitivity and specificity for monoplex-PCR were (99.53%, 95.46%) and for multiplex-PCR (90.30%, 99.30%) respectively. InvA specificity and specificity for using monoplex-PCR was (95.06%, 90.31%) and multiplex-PCRs (89.41%, 98.00%) respectively. Sensitivity and specificity for standard stool culture were 62.88% and 99.99%, respectively. Culture showed the highest PPV (99.73%), and monoplex- ttr had the highest NPV (99.67%). Conclusion: Test methods demonstrated high concordance, although stool culture and monoplexed ttr primers had superior specificity and sensitivity, respectively. The use of selenite pre-enrichment step increased Salmonella detection rate. Taken together, molecular detection methods used here could be used to reveal the true extent of both asymptomatic and symptomatic Salmonella exposure events

    Validation of a direct-to-PCR COVID-19 detection protocol utilizing mechanical homogenization: a model for reducing resources needed for accurate testing

    Get PDF
    Efficient and effective viral detection methodologies are a critical piece in the global response to COVID-19, with PCR-based nasopharyngeal and oropharyngeal swab testing serving as the current gold standard. With over 100 million confirmed cases globally, the supply chains supporting these PCR testing efforts are under a tremendous amount of stress, driving the need for innovative and accurate diagnostic solutions. Herein, the utility of a direct-to-PCR method of SARS-CoV-2 detection grounded in mechanical homogenization is examined for reducing resources needed for testing while maintaining a comparable sensitivity to the current gold standard workflow of nasopharyngeal and oropharyngeal swab testing. In a head-to-head comparison of 30 patient samples, this initial clinical validation study of the proposed homogenization-based workflow demonstrated significant agreeability with the current extraction-based method utilized while cutting the total resources needed in half

    Evasion of MAIT cell recognition by the African Salmonella Typhimurium ST313 pathovar that causes invasive disease

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified. We report that typhoidal and nontyphoidal Salmonella enterica strains activate MAIT cells. However, S. Typhimurium sequence type 313 (ST313) lineage 2 strains, which are responsible for the burden of multidrug-resistant nontyphoidal invasive disease in Africa, escape MAIT cell recognition through overexpression of ribB. This bacterial gene encodes the 4-dihydroxy-2-butanone-4-phosphate synthase enzyme of the riboflavin biosynthetic pathway. The MAIT cell-specific phenotype did not extend to other innate lymphocytes. We propose that ribB overexpression is an evolved trait that facilitates evasion from immune recognition by MAIT cells and contributes to the invasive pathogenesis of S. Typhimurium ST313 lineage 2
    corecore