
 
 

 
 

    

NATURAL IMMUNITY TO SALMONELLA IN HUMANS 

 

Thesis submitted in accordance with the requirements of the 

University of Malawi and University of Liverpool for the degree of 

 

Doctor in Philosophy 

                                                                     by 

Tonney Stophen Nyirenda 

 

February 2015 

University of Malawi and University of Liverpool



DECLARATION 
 

i 
 

DECLARATION 

THIS WORK HAS NOT PREVIOUSLY BEEN ACCEPTED IN SUBSTANCE FOR 

ANY DEGREE AND IS NOT BEING CURRENTLY SUBMITTED IN 

CANDIDATURE FOR ANY DEGREE 

Signed: ……………………………………………………………..... 

Tonney S. Nyirenda                                                10
th

 February 2015                                                     

 

THIS THESIS IS THE RESULT OF MY OWN INVESTIGATION, EXCEPT WHERE 

OTHER WISE STATED. OTHER SOURCES ARE ACKNOWLEDGED AND 

BIBLIOGRAPHY IS APPENDED. 

Signed: ……………………………………………………………….. 

Tonney S. Nyirenda                                             10
th

 February 2015  

 

I HEREBY GIVE CONSENT FOR MY THESIS. IF ACCEPTED, TO BE AVAILABLE 

FOR PHOTOCOPYING AND FOR INTER-LIBRARY LOAN AND FOR THE TITLE 

AND ABSTRACT TO BE MADE AVAILABLE TO OUTSIDE ORGANISATIONS. 

Signed: ………………………………………………………………… 

Tonney S. Nyirenda                                           10
th

 February 2015 

 



DECLARATION 
 

ii 
 

DECLARATION OF WORK DONE 

This work was part of four studies titled “Development of adaptive immunity to 

nontyphoidal Salmonella in Malawian children”, “Salmonella exposure and development 

of specific immunity in Malawian children”, “Development of T cell and antibody 

mediated immunity in response to invasive Salmonella infection” and “Ty21a oral 

typhoid vaccine induced immunity in the peripheral blood and gut mucosa of healthy 

adults”. All studies were under the supervision of Dr Melita Gordon, Dr Wilson Mandala, 

Prof Robert Heyderman and Prof Stephen Gordon. Some of the work in my study was 

shared among a number of individuals. My contributions for the reported work were as 

follows: 

 

Activity                                                                               

                                                                                                   

Responsibility  

Study designs and protocols                                                                           shared 

Ethical applications                                                                                      shared 

Study community and health care workers sensitizations                               shared 

Participant’s recruitment and consent                                                     others 

Study participants follow up                                                                            others 

Clinical assessment                                                                                          others 

Sample collection (stool, oropharynx swabs, blood, milk, biopsy)                 others 

HIV testing                                                                                               others 

Malaria testing                                                                                                others 



DECLARATION 
 

iii 
 

Blood stream infection surveillance                                                      others 

Immuno-phenotyping (IPT)                                                                             sole 

Intracellular cytokine staining (ICS)                                                                sole 

Enzyme-linked immunosorbent assay (ELISA)                                               sole 

Serum Bactericidal Assay (SBA)                                                                     sole 

Preparation of S. Typhimurium homogenate                                                   sole 

Development of real time PCR primers                                                           shared 

DNA extraction                                                                                              sole 

Real time PCR testing                                                                                     sole 

Development of Milk Bactericidal Assay                                                       sole 

Isolation of Salmonella in stool and oropharynx                                            sole 

ELISpot  shared 

 

 

 

 

 

 



ABSTRACT 
 

iv 
 

ABSTRACT 

Background: Salmonella bacteraemia is an important public health problem in children 

from sub Saharan Africa (SSA). Understanding what constitutes natural acquired 

immunity to Salmonella is crucial for the development of Salmonella vaccine. It was 

hypothesized that natural Salmonella exposure within the GIT and peripheral blood 

induces the generation of specific-antibodies and T cells and these might provide 

protection to subsequent Salmonella infection. 

Methods: Natural acquisition of antibody and T cell immunity to Salmonella was 

investigated in healthy and Salmonella infected Malawian children. Acquisition of 

typhoid vaccine induced T cell immunity in healthy adults from the United Kingdom 

(UK) was investigated to model natural immunizing events occurring within the gut 

associated lymphoid tissues (GALTs) following Salmonella infection. Acquisition of 

immunity was examined using immunological tools including the intra-cellular cytokine 

staining assay (ICS), serum bactericidal activity (SBA) assay, ELISA and ELISpot. 

Exposure to Salmonella was examined using microbiological tools including standard 

culture and real-time PCR. 

Principal findings: CD4+ T cells and IgG antibodies to Salmonella develops 

sequentially in under-five children. Acquisition of Salmonella-specific CD4+ T cells and 

antibodies coincides with the decline in S. Typhimurium bacteraemia cases in older 

children. As much as 47% of Malawian children (aged 6-18 months) are exposed to 

Salmonella at least once within the gastrointestinal tract (GIT). Natural Salmonella 
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exposure within the GIT is associated with development of potentially protective SBA in 

children. Invasive Salmonella infection elicits an increase in generation of Salmonella-

specific CD4+T cells, IgG and IgA antibody secreting cells (ASC). Oral Ty21a 

vaccination (model of natural Salmonella infection) did not elicit an increase in 

generation of both CD4+Cytokine+ and CD8+Cytokine+ T cells in the peripheral blood 

and gut mucosa  compartments at day 11, and day 18 post vaccination.  

Conclusion: Young children (<2 years of age) are more vulnerable to invasive 

Salmonella infection. Salmonella exposure within the GIT and peripheral blood 

compartments tissues facilitates acquisition of robust immunity (mediated by antibodies 

and T cells) in children and these might provide protection to subsequent Salmonella 

infection. Public health interventions are urgently required in SSA including vaccination 

with cross-protective Salmonella vaccine, improvements in sanitation, access to clean and 

safe water and food hygiene.  
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CHAPTER 1: INTRODUCTION  

1. THEME AND OVERVIEW 

This thesis focusses on a number of cross-cutting issues including natural and vaccine 

induced immunity to Salmonella in humans. Investigations into natural immunity aimed 

at characterizing the development of antibody and T cell immunity to Salmonella in 

healthy children and children with Salmonella bacteraemia during the acute and 

convalescent phases, and the relationship between Salmonella exposure events within the 

gastrointestinal tract (GIT) and the development of Salmonella-specific serum immunity 

in healthy children. Investigations into oral Ty21a vaccine induced immunity aimed 

modelling natural Salmonella infection immunizing events occurring within the gut 

associated lymphoid tissues (GALT) and secondary lymphoid tissues (SLTs) in healthy 

adults from the UK. 

 

1.1  THE SALMONELLA BACTERIUM 

Salmonella are Gram-negative, facultative and rod-shaped bacteria belonging to 

Enterobacteriaceae family. Members of Salmonella genus are mainly motile, aerogenic, 

non-lactose fermenting, oxidase negative, urease negative, citrate-utilizing and produce 

hydrogen sulphide. 
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1.2  NOMENCLATURE 

The genus name Salmonella was adopted in honour of an American scientist Dr Daniel 

Elmer Salmon whose assistant researcher Theobald Smith discovered Salmonella from 

the intestine of a pig in 1884 (Su & Chiu, 2007, Schultz, 2008). Salmonellae are widely 

distributed in nature and cause gastroenteritis and bacteraemia in both humans and 

animals. The nomenclature of Salmonella has been the subject of scientific debate for 

some time because historically the taxonomy of Salmonella genus was based on names 

according to epidemiology, clinical conditions, host range, biochemical reactions and 

surface antigenic patterns (Su & Chiu, 2007, Agbaje, et al., 2011). These early taxonomy 

approaches proved to be inconsistent in dividing the genus into species and serovars. The 

advent of nucleotide technology in early 1970s was the turning point for Salmonella 

genus nomenclature (Crosa, et al., 1973). Nucleotide sequence relatedness as 

demonstrated by DNA-DNA hybridization experiments uncovered that typical 

salmonellae were closely related and could be considered a single species with the 

exception of Salmonella bongori which was shown to have a distinct nucleotide sequence 

(Le Minor, et al., 1982, Reeves, et al., 1989). In 1986, a proposal to designate  

Salmonella enterica  as the only species was recommended by Le Minor and Popff  and 

received overwhelming acceptance by the subcommittee of Enterobacteriaceae of the  

International Committee on Systematic Bacteriology at the XIV International Congress of 

Microbiology (Su & Chiu, 2007). In 1989, Reeves and colleagues published and 

upgraded Salmonella enterica subsp. Bongori from subspecies to  Salmonella bongori 

species (Reeves, et al., 1989). The current nomenclature used by the Centre for Disease 
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Control and Prevention is borne out of recommendation from World Health 

Organization’s (WHO) collaborating centre based on the two-species Salmonella enterica 

and bongori  with each species containing multiple serovars (Agbaje, et al., 2011). 

Currently, more than 2,500 Salmonella serovars have been identified based on antibody 

reaction with surface antigens: O (somatic), H (flagellin) and Vi (Vi or capsular 

polysaccharide) as described by Kauffman and White. The Kauffman-White scheme is 

now re-designated as the White Kauffman-Le Minor Scheme and this document  has a 

list of all identified Salmonella serovars (Agbaje, et al., 2011).  The current nomenclature 

is summarized in the Figure 1.1.  

All salmonellae of direct relevance to human infection fall within the subspecies enterica. 

Note that, for example, the full written designation of Salmonella enterica, subsp. 

enterica Typhimurium is commonly shortened to Salmonella Typhimurium or S. 

Typhimurium, and this modification will be followed in this thesis. 

S. Typhi, S. Paratyphi A and B are all human host restricted Salmonella serovars while S. 

Typhimurium and S. Enteritidis have a wider host range and spread between humans and 

domestic animals such as chicken, goat and cattle. 
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Figure 1. 1:  Current Salmonella nomenclature 

 

In this introductory chapter we focus on S. Typhimurium and also provide comparative 

background with S. Typhi and S. Enteritidis.  
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1.3  BURDEN OF SALMONELLA INFECTIONS IN HUMANS  

1.3.1 Geographical distribution and epidemiology of S. Typhi 

Over the last century, cases of enteric fever (typhoid fever) caused by S. Typhi have 

tremendously reduced in the developed countries (Clark, et al., 2010). In the developing 

countries particularly in Eastern Asia, the sub-continent of India and Africa, where access 

to clean water is low and people live in poor sanitary conditions, enteric fever is still 

endemic (Figure 1.2) (Crump, et al., 2004, Crump & Mintz, 2010). It is estimated that 

21.7 million people worldwide contract typhoid infection annually and about 217,000 of 

these typhoid cases die (assuming a conservative case fatality rate of 1%) (Crump, et al., 

2004, Crump & Mintz, 2010). In the year 2004, in south Asia, southeast Asia and the 

Indian Subcontinent, the overall incidence rate of typhoid fever was as high as 

>100/100,000 cases per year (Crump, et al., 2004). Toddlers, preschool children, school 

going children and young adults are at risk of typhoid disease (Pasetti, et al., 2011) 

In sub-Saharan Africa (SSA), estimating the true burden of typhoid fever has been 

challenging because data is patchy and confined largely to sentinel facility-based 

surveillance (Crump & Heyderman, 2014). In Kenyan urban slums, the incidence of S. 

Typhi bacteraemia was 247 cases per 100,000 person-years of observation among 

children <10 years and this was similar to incidence of S. Typhi bacteraemia in Asian 

urban slums (Breiman, et al., 2012).   
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In SSA, multi-drug resistant (MDR) S. Typhi isolates have increased in the recent years 

(Kariuki, et al., 2010, Lutterloh, et al., 2012). In Kenya, MDR S. Typhi isolates appear to 

belong to a single haplotype H58. This haplotype H58 MDR S. Typhi was first identified 

in Southeast Asia suggesting intercontinental spread of a single MDR clone (Kariuki, et 

al., 2010). In Zambia, between 2010 and 2012 the outbreak of typhoid affected about 

2,000 with case fatality rate of 0.5% (Hendriksen, et al., 2014). A majority of S. Typhi 

isolates in Zambia are MDR (83%) and belong to MLST ST1 and haplotype H58B 

(Hendriksen, et al., 2014).  

In Malawi and Mozambique border MDR S. Typhi associated with neurological 

manifestation were reported in 2009 (Lutterloh, et al., 2012, Sejvar, et al., 2012). Out of 

214 suspected cases, 47 deaths were registered, representing case fatality rate of 5% 

(Lutterloh, et al., 2012). In Malawi, between 2011 and 2014, through blood stream 

infection surveillance that Malawi Liverpool Wellcome Trust (MLW) has undertaken at a 

referral hospital in Blantyre, approximately 2,000 S. Typhi were isolated in blood and 

95% of these isolates are MDR (unpublished data). MDR isolates from Blantyre, Malawi 

also belong to haplotype H58 (unpublished data).  

Since 2008, in Uganda outbreaks of typhoid associated with increased intestinal 

perforation in the districts of  Kasese (ranging 40-80%) and Bundibugyo (more than 

20%) were reported (Neil, et al., 2012, Walters, et al., 2014). Case fatality rate for S. 

Typhi bacteraemia was 8.1% (47 deaths/577 cases) in the district of Kasese (Neil, et al., 
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2012). Estimated S. Typhi incidence in the community survey is considerably high at 

8,092 cases/100,000 persons (Neil, et al., 2012).  

In Dzivaresekwa and Kuwadzana suburb of Harare City, Zimbabwe, typhoid outbreak 

involving approximately 2,600 confirmed and suspected-cases were reported in 2011 

(Muti, et al., 2014, Polonsky, et al., 2014). These outbreaks were attributed to 

environmental sources (Centers for Disease & Prevention, 2012). Taken together these 

reports demonstrate that the burden of typhoid fever in the developing countries is 

considerably high and requires public health interventions including vaccination and 

improvements in food hygiene and sanitation. 

 

Figure 1. 2: Geographical distribution of typhoid fever  

(Adapted from Bull World Health Org 2004:82:351) 
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1.3.2 Geographical distribution and epidemiology of nontyphoidal Salmonella 

Nontyphoidal Salmonella (NTS), principally Salmonella enterica serovars Typhimurium 

(S. Typhimurium) and Enteritidis (S. Enteritidis) causes gastroenteritis worldwide but 

commonly cause life-threatening bacteraemia in SSA (Figure 1.3) (Reddy, et al., 2010, 

Feasey, et al., 2012). NTS bacteraemia is particularly common in children below 3 years 

of age and HIV infected individuals (Gordon, et al., 2008). Other important NTS 

bacteraemia comorbidities in children from SSA include malaria, malnutrition, anaemia 

and sickle cell (Gordon, et al., 2008).   

A meta-analysis demonstrated that about 10% of all infections in Africa are blood stream 

infection (BSI) (Figure 1.3) (Reddy, et al., 2010). The important bacterial pathogens 

causing BSI in Africa include; Salmonella, Streptococcus pneumoniae, Staphylococcus 

aureus and E. coli. Approximately 90% of Salmonella BSI are caused by NTS (Reddy, et 

al., 2010). Fever surveillance in 11 sites located in 7 countries across SSA (Tanzania, 

Mozambique, Malawi, Kenya, Ghana, Gabon and Burkina Faso) during the RTS,S/AS01 

malaria vaccine phase 3 trials demonstrated NTS bacteraemia incidence of  478 

cases/100,000 patients per year in children aged 5 and 17 months (Agnandji, et al., 2011). 

NTS case fatality in children, exceed 20%, even with appropriate antimicrobial treatment 

(Gordon, et al., 2002, Gordon, et al., 2008).   

Over the past 6 years NTS bacteraemia  have been decreasing in SSA and this has been 

attributed in part to the decline in malaria cases (important risk factor in young children) 
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and introduction of antiretroviral therapy (ART) (HIV is an important risk factor) 

(Kariuki, et al., 2006, Mackenzie, et al., 2010, Feasey, et al., 2014). In Blantyre, Malawi, 

between  1997 and 2008 blood stream infections (BSI) declined from 16% of suspected 

cases to 10%  (a majority of these BSIs were caused by NTS) (Feasey, et al., 2014). Prior 

to the introduction of free antiretroviral therapy (ART) and cotrimoxazole prophylactic 

therapy (CPT) in Malawi public hospitals case fatality of NTS bacteraemia was more 

than 40% in HIV infected individuals. BSI case fatality rate has reduced from 40% to 

14% following the roll out of antiretroviral therapy (ART) and cotrimoxazole 

prophylactic therapy (CPT) (Feasey, et al., 2014).   

Taken together, although NTS bacteraemia cases has fallen in the recent years, the 

burden of remain considerably high (cases of NTS bacteraemia and related case fatality 

rate remain high). Public health interventions including vaccination and improvements in 

food hygiene and environmental sanitation are required.  

 

1.3.3  Invasive NTS molecular genetics 

Evidence from whole genome sequencing of S. Typhimurium strain D23580, the 

commonest NTS serovar isolated in Malawi and a representative invasive NTS strain in 

SSA, uncovered that it has a particular multilocus sequence type (MLST), ST313 which 

is distinct from the classical S. Typhimurium sequence type ST19 associated with 

gastroenteritis in other parts of the world  (Kingsley, et al., 2009, de Jong, et al., 2012). 

High throughput genome sequencing of S. Typhimurium strain D23580 has also revealed 
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loss of genes implicated in virulence such as ssel, ratB, and the accumulation of 44 novel 

pseudogenes or deletions relative to S. Typhimurium strain LT2 (Kingsley, et al., 2009, 

de Jong, et al., 2012). Taken together, ST313 appear to have undergone genomic 

degradation similar to S. Typhi which suggests possible loss of an enteric lifestyle and 

possible human-host adaptation (Msefula, et al., 2012, Okoro, et al., 2012) and this have 

not been thoroughly investigated. 

 

Figure 1. 3: Community acquired-blood stream infections in Africa  

 (Adapted from Reddy EA Lancet Infect Dis 2010:10:417-32) 
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1.3.4 Environmental risk factors 

1.3.4.1 Food and water 

Salmonella infection is contracted through oral-faecal route. In many developing 

countries (particularly in Eastern Asia, the sub-continent of India and Africa) food 

hygiene practices, sanitary conditions remain poor and access to clean water is still low 

(Crump & Mintz, 2010, Kariuki, et al., 2010, Breiman, et al., 2012). These inefficacies 

hugely contribute to the risk of contracting Salmonella infections. This is further 

supported by evidenced of seasonal peaks of NTS bacteraemia during the rainy season 

(Kariuki, et al., 2006, Gordon, et al., 2008, Morpeth, et al., 2009). In Africa, it  has been 

demonstrated that  enteric organisms such as Salmonella are found at highest 

concentrations in drinking water source at the onset of the wet season (Wright, 1986). In 

the developed countries food such as meat, eggs and daily products have all been 

implicated as the vehicles of NTS transmission (Crump, et al., 2002). Similarly NTS 

have also been isolated from cattle, goats, sheep and pigs in Africa (Morpeth, et al., 

2009). However in Africa, there is no proven link of invasive NTS isolates from animals 

and humans (Kariuki, et al., 2006, Feasey, et al., 2012). 

 

1.3.4.2 Transmission of Salmonella  

S. Typhi, S. Paratyphi A and B are all human host restricted while NTS have a wider host 

range and spread between humans and domestic animals. Children may excrete NTS in 

their stool for some weeks after recovering from enteric infection (Morpeth, et al., 2009). 
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Asymptomatic NTS carriers have previously been demonstrated in Africa (Nkuo-Akenji, 

et al., 2001). Duration of NTS excretion and carriage could form the basis of Salmonella 

transmission from human to humans and animals to humans. Contact with domestic 

animals, particularly chickens is a well-established risk factor of contracting NTS 

infection (Crump, et al., 2002). Kariuki et al in Kenya, demonstrated carriage of identical  

NTS strains in stool of children with invasive disease and human household contacts, 

while there was lack of identical NTS strains in children with invasive disease and  

isolates  from households  domestic animals and environment (Kariuki, et al., 2006). 

These findings suggested anthroponotic transmission (human-host restricted) and not 

zoonotic transmission (Kariuki, et al., 2006). S. Typhimurium strain D23580 has recently 

been shown to cause invasive disease in chickens (Parsons, et al., 2013), but whether 

chicken could be the vehicle for transmission of invasive NTS strain from animals to 

humans in Africa has not been shown. Taken together, at the moment it is not clear 

whether transmission of invasive NTS isolates in Africa occur from human to humans 

and also animal to humans. 

 

1.4  CLINICAL FEATURES AND MANAGEMENT OF INVASIVE 

SALMONELLA DISEASE  

1.4.1 Clinical features of typhoid fever  

Typhoid fever is an invasive, systemic clinical syndrome that is characterized by high 

fever. Typhoid patients also presents with bradycardia, malaise, headache, cough and 
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abdominal pains during the first week of infection. During the second week typhoid 

patients may present with rose spots, hepato-splenomegaly, diarrhoea and constipation. 

During the third week typhoid  patients may develop complications  including  sepsis and 

shock, gastrointestinal bleeding or perforation, encephalopathy, and focal metastatic 

complications such as cholecystitis or hepatitis (Weening, et al., 2005, Crump, et al., 

2008, Gordon, 2008, Nambiar, et al., 2009, Feasey, et al., 2012).  

 

1.4.2 Clinical presentation of invasive NTS disease (NTS bacteraemia) 

NTS bacteraemia clinical presentation is poorly defined especially in young children and 

exhibit clinical overlap with the presentations of both pneumonia and malaria (Graham, 

et al., 2000, Graham & English, 2009, Feasey, et al., 2012). Invasive NTS disease 

typically presents as a febrile systemic illness similar to enteric fever (Graham, et al., 

2000, Gordon, et al., 2002, Feasey, et al., 2012). Adults with Salmonella bacteraemia 

commonly presents with a combination of high fever and splenomegaly (Peters, et al., 

2004). NTS also causes meningitis in children and adults and this is associated with poor 

health outcomes (Molyneux, et al., 2009). Case fatality of NTS meningitis is 52% in 

young children and 80% in adults (Molyneux, et al., 2009).  

 

1.4.3 Treatment of typhoid fever 

Emergence of MDR S. Typhi resistant to ampicillin, chloramphenicol, trimethoprim-

sulfamethoxazole, amoxicillin and ciprofloxacin commonly used for typhoid  treatment 



Introduction and Literature review 
 

14 
 

has been reported in Africa and Asia (Kariuki, et al., 2010, Zaki & Karande, 2011). 

Ciprofloxacin resistance is an increasing problem, especially in the Indian subcontinent 

and Southeast Asia (Rowe, et al., 1997, Kariuki, et al., 2010). In-case of ciprofloxacin 

resistance, azithromycin is the recommended first line treatment and it performs  better at 

treating uncomplicated enteric fever than both fluoroquinolone drugs and ceftriaxone 

(Crump & Mintz, 2010, Aggarwal, et al., 2011, Zaki & Karande, 2011). Azithromycin 

significantly reduces relapse rates compared to ceftriaxone (Effa & Bukirwa, 2011).  

 

Current treatment regime for typhoid fever is associated with better clinical outcomes 

compared to the past. For instance, during three episodes of S. Typhi outbreak between 

1948-1990, Van den Bergh et al demonstrated that typhoid patient’s treated with full dose 

of chloramphenicol cleared  high fever in  6 days, 13% of cases developed complications 

and mortality was 5% while typhoid patients that were not treated, fever cleared after 16 

days, 38% developed complications and mortality was 26% (van den Bergh, et al., 1999). 

A recent review by Parry and colleagues, reported that typhoid patients treated with 

fluoroquinolones on average fever-clearance time is less than four days, and the cure 

rates exceed 96 percent (Parry, et al., 2002). They also reported that less than 2 percent of 

treated patients become persistent faecal carriers or relapse occurs (positive faecal culture 

at the end of treatment or recurrence of symptoms with a positive blood or bone marrow 

culture after hospital discharge) (Parry, et al., 2002). These reports show that clinical 

outcome of treated typhoid patients are generally good.  
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1.4.4 Treatment of NTS bacteraemia 

In Malawi and SSA the epidemics of MDR invasive NTS have emerged (Gordon, et al., 

2008). MDR are defined as resistance to ampicillin, chloramphenicol, and co-trimoxazole 

(Gordon, et al., 2008). Currently NTS sepsis is treated with  the third generation 

cephalosporins and fluoroquinolones such as ciprofloxacin (Feasey, et al., 2012). 

Azithromycin is alternative antimicrobial drug while ceftriaxone is the preferred first line 

intravenous treatment for patients unable to take oral dugs (Feasey, et al., 2012). 

 

1.5  S. TYPHIMURIUM AND S. TYPHI AS PATHOGENS AND HOST 

ADAPTIVE DIFFERENCES  

This section provides a description of Salmonella bacterium structure to appreciate their 

importance in disease pathogenesis.   

1.5.1 Flagella 

Flagella are long helical filaments attached to rotary motors embedded with the 

membrane and are essential for motility during infection (Figure 1.4) (de Jong, et al., 

2012). The main subunit of Salmonella flagella is encoded by fliC or fljB and these 

correspond to H1 and H2 variants of the H antigen, respectively (Silverman & Simon, 

1980). Interestingly, only one type of flagellin can be expressed at a specific time through 

a phase variation mechanism (Simon, et al., 1980). In contrast to S. Typhimurium where 

variation of flagellin types has been observed, S. Typhi are mostly monophasic since they 

lack the fljB locus (Frankel, et al., 1989). Parkhill et al have demonstrated that fljB is a 
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pseudogene in S. Typhi which may explain this phenomenon (Parkhill, et al., 2001). 

During the early phase of S. Typhimurium infection within the intestine, flagellin has 

been implicated in up-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β) 

and  the chemo-attractant (IL-8), and  results in the influx of neutrophils into the gut 

mucosal tissue (Zeng, et al., 2003). In-contrast, S. Typhi, through TviA (S. Typhi specific 

DNA region preventing the production of IL-8 during invasion of intestinal epithelial 

cells) repress flagellin, therefore avoiding toll like receptor 5 (TLR-5) signalling and 

subsequent migration of neutrophil  through IL-8 secretion (Raffatellu, et al., 2005, 

Winter, et al., 2008). 

 

SPI

flagellin

fimbriae

plasmid

outer cell membrane

inner cell membrane

peptidoglycan

LipopolysaccharideTSSS
 

Figure 1. 4: Structure of S. Typhimurium 

 

1.5.2 Vi capsule  

The Vi antigen is a polysaccharide capsule and is present in only three Salmonella 

serovars; S. Typhi, S. Paratyphi C and S. Dublin (Pickard, et al., 2003). Vi has important 

roles in S. Typhi virulence and is regulated by the two loci: viaA and viaB (Kolyva, et al., 
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1992). It is thought that Vi presence increases disease infectivity and severity (Wain, et 

al., 2005). Contradicting these thoughts, in human volunteers exposed to Vi capsule 

negative S. Typhi mutants exhibit a typhoid-like disease (Zhang, et al., 2008). These 

observations suggest that Vi is not absolutely required for S. Typhi disease infectivity and 

severity. In addition, Vi capsule is associated with resistance to serum bactericidal 

activity and intracellular survival (Looney & Steigbigel, 1986, Miyake, et al., 1998). Vi 

capsule prevents recognition of S. Typhi lipopolysaccharide (LPS) by the host TLR-4 and 

inflammation in the intestinal mucosa (Sharma & Qadri, 2004, Wilson, et al., 2008). 

Together these observations indicate that the Vi capsule facilitates immune-modulatory 

activities in the intestinal mucosa by limiting S. Typhi LPS and TLR-4 interaction (limits 

pro-inflammatory response and influx of neutrophils), while at the same time promoting 

dissemination of S. Typhi to distant tissues (escape serum bactericidal activity and 

promoting survival inside the phagocytes). 

 

1.5.3 Lipopolysaccharide 

Lipopolysaccharide (LPS) is the main cell wall component of all Gram negative bacteria 

and is comprised of three structural regions; O antigen, core and lipid A (Ernst, et al., 

2001) (Figure 1.4 and 1.5). Both O antigen and core are made up of polysaccharide 

chains while lipid A is made up of the fatty acid and phosphates substitutes bound to a 

central glucosamine dimer. In addition, lipid A comprises the outer leaflet made of the 

outer membrane lipid bilayer, while the inner leaflet is a phospholipid. Primarily LPS 

prevents bacteria from complement attack. Assembly of membrane attack complex 
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(MAC) is affected by the chemistry of the O polysaccharide, the length of O 

polysaccharide  chain and relative amounts of long chain smooth LPS (Rautemaa & Meri, 

1999, Murray, et al., 2006). MacLennan et al demonstrated previously that NTS strains 

causing invasive NTS disease in Malawi had long-chain lipopolysaccharide and rck gene 

(MacLennan, et al., 2008), features that resist direct complement-mediated killing 

(Heffernan, et al., 1992, Heffernan, et al., 1992). Lack of ex vivo NTS killing and 

complement deposition in serum from Malawian children (< 16 months of age) lacking 

anti-Salmonella antibody strongly suggest that long-chain lipopolysaccharide and rck  

confer protection against complement in the absence of specific IgG or IgM antibody in 

humans (MacLennan, et al., 2008). The O-specific chain is very variable even within the 

Gram-negative species and this form the chemical basis for serological classification of 

Salmonella. In addition, LPS components; O-antigen, core polysaccharide and lipid A 

activates cellular immune system through interactions with TLR-4 and its accessory 

protein termed MD-2 (Beutler, 2000, Kaisho & Akira, 2000). 
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Figure 1. 5: Chemical structure of Gram-negative lipopolysaccharide 

 

1.5.4  Salmonella Pathogenicity Island and Type Three Secretion System 

Salmonella Pathogenicity Islands (SPI) are genetic structures where virulence genes 

cluster in a localized region of the chromosome (Figure 1.4)  (Groisman & Ochman, 

1996). Salmonella acquire SPI virulence genes through horizontal gene transfer 

(Groisman & Ochman, 1996). There are up to 21 SPIs known to date, but only SPI-1 and 

SPI-2 have been extensively studied (Sabbagh, et al., 2010). For delivery of virulence 

proteins, SPIs utilize the type three secretion system (TTSS or T3SS). TTSS are 

specialized virulence devices capable of modifying host cell function (signal 

transduction, cytoskeletal architecture, membrane trafficking and cytokine gene 

expression) through the direct translocation of bacterial virulence proteins into the host 

cells cytoplasm (Hueck, 1998, Ohl & Miller, 2001). Unique sets of virulence proteins 
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contribute to the distinct virulence phenotype of each Salmonella serovar (Ohl & Miller, 

2001).  

Salmonella enterica contains two TTSS gene clusters encoding a secretion apparatus that 

functions like a molecular syringe (de Jong, et al., 2012). SPI-1 harbours the genes for 

TTSS-1 which are essential during the early phase of  Salmonella infection for invasion 

of non-phagocytic cell like intestinal epithelial cells (M cells) and induction of intestinal 

secretory and inflammatory responses (Watson, et al., 1995, Galan, 1999). In-vitro 

models uncovered that Salmonella mutants lacking a functional SPI-1 TSSS are unable to 

invade epithelial cells or trigger cytokine production (Watson, et al., 1995). These 

attributes permits Salmonella (typically S. Typhimurium) to invade the intestinal mucosa 

barriers, trigger pro-inflammatory responses, neutrophils influx and but may fail to 

establish system infection when overcome by host resistance at this early phase of 

infection.  

TTSS-2 encoded on SPI-2 is essential during the second phase of Salmonella infection, 

for replication inside the macrophages and establishment of systemic infection (Hensel, et 

al., 1998) (Forest, et al., 2010). TTSS-2 is activated in the phagosome and it translocate 

effector proteins from phagosome into macrophage cytosol and prevents co-localization 

of Salmonella containing vacuoles (SCV) with NADPH dependent oxidase that catalyses 

production of reactive oxygen species within the phagocyte (Uchiya, et al., 1999, Ohl & 

Miller, 2001). These attributes permit Salmonella enterica (typically S. Typhi) to survive 

and replicates within the host macrophage and establish systemic infection. 
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1.5.5 PhoP/PhoQ regulator 

PhoP/PhoQ regulators are two component regulators that regulate simple signal 

transduction systems of bacterial gene expression in response to environmental cues 

(Miller, et al., 1989, Ohl & Miller, 2001). PhoP/PhoQ regulators are found in many 

Gram-negative bacteria including Salmonella (Groisman, 2001). PhoP/PhoQ regulation 

involve triggering expression of the PhoP activated genes (pag) and repressing expression 

of genes termed PhoP-repressed genes (prg) (Miller, et al., 1989, Ohl & Miller, 2001). 

PhoP-activated genes are expressed (SPI-2 TSSS) for intra-cellular survival while PhoP 

regressed genes (SPI-1 TTSS) are switched off in the phagosome (Pegues, et al., 1995). 

Using PhoP null and PhoP mutant’s experiments, it has been shown that timely regulation 

of the PhoP/PhoQ regulator is essential for Salmonella survival (Miller & Mekalanos, 

1990). At least in part, PhoP- activated gene promotes resistance to antimicrobial 

peptides by catalysing covalent modification of the lipid A component of LPS (Guo, et 

al., 1998, Ohl & Miller, 2001). PhoP regulated lipid A modification also promotes a 

bacterium LPS molecule to avoid pro-inflammatory response (Guo, et al., 1997). These 

attributes allow Salmonella (typically S. Typhi) to survive and replicate within the host 

macrophage and establish systemic infection. 

 



Introduction and Literature review 
 

22 
 

1.6  IMMUNITY TO SALMONELLA INFECTION  

In this section we discuss immunity to Salmonella. Human studies on immunity to 

Salmonella are generally lacking and much of what is known about immunity to 

Salmonella comes from murine studies. Since S. Typhi is human host restricted and 

cannot cause disease in mice, therefore immunity to S. Typhi is actually investigated in S. 

Typhimurium murine models. It therefore possible that what is true for immunity to S. 

Typhimurium could not be true for immunity to S. Typhi. 

 

1.6.1 Spread of ingested Salmonella to distant tissues via the GIT 

To fully understand the human host response to Salmonella infection it is important to 

appreciate the steps that lead to tissue invasion. Human beings ingest Salmonella from 

contaminated food, water and fomites (Kariuki, et al., 2006). Salmonella reaches the 

distal ileum or caecum, following the survival of host protective mechanisms that include 

competition with normal flora and gastric acid toxicity (Mastroeni, 2003, Tam, et al., 

2008). Murine models reveal that Peyer’s patches (PP) and epithelial covering villi are 

the key sites where Salmonella penetrates the gut epithelial barrier (Tam, et al., 2008)  

Salmonella invades the PP specialised epithelial cells known as Microfold cells (M cells) 

through SPI-1 (Monack, et al., 2004) (Figure 1.6). Salmonella are also transported from 

the gastrointestinal tract to the blood stream by CD18 expressing phagocytes (Vazquez-

Torres, et al., 1999). Salmonella also penetrates the gut epithelial barrier through 

dendritic cells (DC). DCs extend their dendrites between epithelial cells, overlying villi 
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and capture gut luminal Salmonella. DCs then translocate the captured Salmonella into 

the lamina propria (LP) by retracting its dendrites (Rescigno, et al., 2001). Salmonella 

that penetrate the PP, directly access the mesenteric lymph node (MLN) while LP 

Salmonella finds their way to the MLN through the lymphatic drainage system (Monack, 

et al., 2004). Resident macrophages ingest Salmonella in the PP and MLN, to control 

Salmonella infection. However, virulent Salmonella may evade macrophage immunity by 

inducing macrophage cell death through SPI-1 encoded Sip B protein which activates 

caspase 1 (Monack, et al., 2004). Depending on Salmonella virulence and host 

immunological factors, Salmonella can remain restricted to the  MLN or disseminate via 

the thoracic duct to systemic organs  including  peripheral blood, spleen, liver and bone 

marrow (Mastroeni, 2003, Sansonetti, 2004). 

 

Figure 1. 6:  Salmonella ingestion and invasion of the gut mucosal barrier 
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At the gut lumen Salmonella evade epithelial through direct invasion (depend on the 

virulence of Salmonella serovar) of the epithelial cells, through the M cells and DC 

capture of the Salmonella from the gut lumen. In the gut mucosal Salmonella can be 

killed by innate immune cells (neutrophils and macrophages) and adaptive immune cells 

(B cells and T cells) or survives and disseminate to distance tissues. 

1.6.2 Innate immunity in response to Salmonella infection  

In addition to gastric pH, innate immunity provides the first line of defence against 

Salmonella infection. It comprises the cellular components such as macrophages and 

neutrophils and the soluble components such as complement and cytokines.  

1.6.2.1 Activation of innate immune responses to Salmonella infection 

Innate cells (neutrophils and monocytes) are primarily  activated through pathogen 

recognition receptors (PRR) expressed on cell surfaces such as toll like receptor-4 (TLR-

4) when they recognise pathogen associated molecular patterns (PAMPS) such as 

lipopolysaccharide (LPS) expressed by infecting pathogens. Important specific PAMPs 

and TLRs interactions in Salmonella and innate cells involves; LPS and TLR-4, flagellin 

and TLR-5 and lipopeptide and TLR-2/6 (Srinivasan & McSorley, 2006, Tam, et al., 

2008). For instance, TLR-4 and LPS interactions result in signal transduction that 

culminates into activation of NFκB and leads to the transcription of pro-inflammatory 

cytokines such as TNF-α. The importance of macrophage TLR-4 has been shown in LPS 

d/d mice (TLR-4 defect mice). LPS d/d mice are hypo responsive to Salmonella LPS and 
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fail to control Salmonella growth compared to wild type mice that efficiently control 

Salmonella growth (Hormaeche, 1990, Mastroeni, 2002).   

 

1.6.2.2 Phagocytosis and intracellular killing by phagocytes 

Monocytes and neutrophils are important for controlling Salmonella during the early 

phase of infection (Fierer, 2001, Cheminay, et al., 2004, Tam, et al., 2008). Mice 

rendered neutropenic by administration of granulocyte depleting monoclonal antibodies, 

are more susceptible to Salmonella infection compared to wild type mice, indicating  

neutrophils importance in controlling early Salmonella infection (Conlan, 1997). 

Neutrophils and monocytes efficiently ingest Salmonella opsonised by complement 

factor C3b, through surface membrane complement receptor 3 (CR3) (van Bruggen, et 

al., 2007). However, non-opsonised Salmonella can also be ingested by macrophages and 

neutrophils through CD14 and LPS interactions (Heale, et al., 2001).  

Killing of engulfed Salmonella is achieved through metabolic reactions within the 

phagosome membrane and cytosol (Mastroeni, 2003). Phagocytes killing mechanisms 

include; acidification (pH ranging 5-4.5) through glucose consumption, generation of 

phagolysosomes, generation of reactive oxygen intermediates (ROI) and reactive nitrogen 

intermediates (RNI) termed respiratory burst (Mastroeni, 2003). In mice, Salmonella 

growth in the tissues is controlled by macrophage associated Nramp1 (natural resistance-

associated macrophage protein one) gene (also known as Slc11a1) during the first few 

days of infection (Hormaeche, 1990). Nramp1 encodes divalent metal (Fe
2+

, Zn
2+

 and 



Introduction and Literature review 
 

26 
 

Mn
2+

) pump phosphoglycoproteins, which are recruited to Salmonella containing 

phagosome and these metals are required for efficient bactericidal functions (Vidal, et al., 

1993, Mastroeni, 2003). In humans, polymorphism of the Nramp1 gene has been 

associated with susceptibility to intracellular bacteria including Mycobacterium 

tuberculosis infection (Vidal, et al., 1993). Furthermore, importance of macrophages in 

controlling Salmonella infection is shown in chronic granulomatous disease (CGD) 

patients. CGD patient’s macrophages exhibit defective respiratory burst and this permits 

intracellular bacteria invasion (Mouy, et al., 1989).  

 

1.6.2.3  Phagocytes killing and the role of cytokines  

Innate immune cells such as macrophages, neutrophils and natural killer cells (NK) 

generate specific-cytokines that allow co-ordination of immune responses and subsequent 

Salmonella killing. To ensure efficient immune response, macrophages and neutrophils at 

the site of infection generate chemokines IL-8 and MIP-1 respectively (Tam, et al., 

2008). IL-8 and MIP-1 allow recruitment of more leukocytes to the site of infection. 

TNF-α generated by macrophages promotes transmigration of leukocytes to site of 

infection, in addition to generation of organised lesions at the infected tissues.  

Importance of TNF-α has been shown in mice treated with anti-TNF-α antibodies or 

TNFR 55 knockout mice prior to Salmonella oral challenge, these mice fail to restrict 

bacterial growth and exhibit poor organised lesions in the infected tissues (Mastroeni, 

2002). IFN-γ is also important for macrophages efficient killing of intracellular 
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Salmonella (Yrlid, et al., 2000, Tam, et al., 2008). NK cells and gamma-delta T cells 

provide the early source of IFN-γ, (Lalmanach & Lantier, 1999, MacLennan, et al., 2004, 

Nyirenda, et al., 2010). Early source of IFN-γ generated by NK cells has been shown in 

Rag 1 knockout mice (lack mature CD4+ T cells, CD8+ T cells and B cells). Rag 1 

knockout mice can produce IFN-γ in response to Salmonella infection, indicating that NK 

cells is the source of  this IFN-γ (Ramarathinam, et al., 1993).  

 

1.6.2.4 Complement mediated immunity to Salmonella  

Complement is comprised of more than 20 proteins present in plasma and on cell 

surfaces. Activation of complement leads to formation of a cascade and these proteins are 

essential for specific biological functions including pathogen killing through complement 

membrane attack (MAC), opsonisation of pathogen and recruitment of inflammatory 

cells (Krushkal, et al., 2000). Complement cascade can be activated in three pathways 

through C3; the classical pathways requires antibody and bacteria complexes for 

activation and these binds to C1 C4 C2 complexes, lectin binding pathway requires 

mannose binding protein (MBP) binding on bacteria surface for activation and this binds 

to C4 and the alternative pathway requires non-specific bacteria surface and factors B D 

P and these binds to C3 (Figure 1.7). Complement involvement in controlling Salmonella 

infection is shown in mice with C1q deficiency (Warren, et al., 2002). C1q deficient mice  

are more susceptible to infection with S. Typhimurium compared to strain-matched 

control mice, indicating  the importance of C1q complement classical pathway in 
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protection against Salmonella infection (Warren, et al., 2002). Sickle cell patients are also 

more susceptible to Salmonella bacteraemia compared to healthy controls (Calis, et al., 

2008). This susceptibility to Salmonella bacteraemia has been attributed to reduced serum 

bactericidal activity as a result of  defective function of  alternative complement pathway 

and low concentration of C3 (Hand & King, 1977) and also  impaired splenic function 

(Booth, et al., 2010).    
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Figure 1. 7: Complement pathways 
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1.6.3 Adaptive immunity to Salmonella  

1.6.3.1 Salmonella antigen processing and presentation by the APC 

Mature dendritic cells (DCs) and macrophages that ingest Salmonella at the site of 

infection migrate to lymph nodes, to prime Salmonella-specific T cells and B cells (Yrlid, 

et al., 2000). DC can either directly (upon uptake and processing of Salmonella) or 

indirectly (by bystander mechanisms, including cross-presentation) present Salmonella 

peptide antigens (Sundquist, et al., 2004). Salmonella antigens are mainly processed 

through exogenous pathway and peptides  are  presented by  antigen presenting  cell 

(APC) to CD4+ T cell through APC MHC-II  and  CD4+ TCR  interaction (Yrlid, et al., 

2000) (Figure 1.8). Salmonella antigens could also be presented by APC to CD8+ T cell 

through APC MHC-I and CD8+ TCR interaction, in a process referred to as cross-

presentation (Salerno-Goncalves & Sztein, 2009). In cross-presentation, APC take up 

antigens and process these antigens through MHC Class II pathway and later processed 

antigens  are directed to their own MHC I pathway and peptides are subsequently 

presented to naive CD8+ T-cells (Heath, et al., 2004, Rock & Shen, 2005, Salerno-

Goncalves & Sztein, 2009). Furthermore, Sztein reported that  CD8+ T cells play a role 

in controlling Salmonella infection and killing is mediated by both MHC-Ia restricted and 

non-classical HLA-E restricted cytotoxic T cell response in Ty21a vaccinated humans 

(Sztein, 2007). 

In MHC-II antigen presentation pathway, phagocytised Salmonella are delivered to 

specialised antigen processing endosome compartments (Wolf & Ploegh, 1995). The 
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endosome compartments contain MHC-II molecules in complex with the invariant chain 

inserted in its membrane (Wolf & Ploegh, 1995). Proteases are activated by acidic 

conditions within the endosome compartments, which allow the generation of 

Salmonella-specific peptides and degradation of invariant chain (Wolf & Ploegh, 1995, 

Jensen, et al., 1999). HDA-DM catalyses the removal of invariant chain and peptides 

loading into the MHC-II grooves (Wolf & Ploegh, 1995, Jensen, et al., 1999). The 

peptide MHC-II complex is then transported to the surface of antigen presenting cell 

(APC) for CD4+ T cell activation through peptide MHC-II complex and TCR interaction 

(Wolf & Ploegh, 1995, Jensen, et al., 1999).  

Efficient T cell activation however, requires co-stimulatory signals in additional to T cell 

TCR and APC peptides MHC complex interactions. Co-stimulatory signals involve 

interactions between APC via CD80 and CD86 (B7.1/B7.2) with T cell CD28 and 

CTLA-4 (Mittrucker, et al., 1999, McSorley, et al., 2002). CD28 mediates positive T cell 

co-stimulatory signal while CTL-4 mediates T cell inhibitory signal (Mittrucker, et al., 

1999, McSorley, et al., 2002). It has been demonstrated that CD28 knockout mice fail to 

mount efficient T cell immunity against S. Typhimurium, indicating the role of CD28 in 

providing T cell positive co-stimulatory signal (Mittrucker, et al., 1999). The recently 

activated Salmonella specific CD4 T cells leave the lymph nodes to the infected tissues, 

to mount Salmonella-specific immune response.  
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Figure 1. 8:   APC antigen processing and presentation to CD4+ T cell  

  

Naïve CD4+ T cells are primed by the APCs in the lymphoid tissues (including GALT, 

PLN) through the interaction of MHC-II and specific-peptide complex (APC) and TCR 

(CD4+ T cell). Mature APC internalise Salmonella and processed Salmonella-specific 

peptides are presented to naïve CD4+ T cells through MHC-II. Primed CD4+ T cells 

migrate to the site of infection of effector functions.  

 

1.6.3.2  Polarisation of CD4+ T helper immunity to Salmonella  

Polarisation of activated CD4+ T cells towards CD4+ T helper 1 (Th1), CD4+ T helper 2 

(Th2) and CD4+ T helper 17 (Th17) are dictated by factors including infecting organisms 

and cytokines (Figure 1.9). CD4+ Th1 immunity to Salmonella is the dominant form of 



Introduction and Literature review 
 

32 
 

immunity. CD4+ T cell production of  IFN-γ and TNF-α significantly increases during  

acute and convalescent phases, in Salmonella infected patients compared to healthy 

controls (Stoycheva & Murdjeva, 2004, Thompson, et al., 2009, Charles, et al., 2010, 

Khoo, et al., 2011). Salmonella infections stimulates macrophage to produce  cytokines; 

IL-12 and IL-23 and these cytokines drives the polarization of recently activated CD4+ T 

cells towards CD4+ T helper 1 cells (MacLennan, et al., 2004). In a feedback fashion 

CD4+ T cell generated IFN-γ and TNF-α provides help to macrophages effector 

functions. Patients with defects in IL-12/IFN-γ axis are more susceptible to Salmonella 

indicating the importance of CD4+ Th1 immunity in controlling Salmonella infection 

(Sharifi Mood, et al., 2004). Lin et al, demonstrated that human-host defence against 

Salmonella infection (during the acute phase) is associated with  these increase in CD4+ 

T helper 1 transcriptional factor Tbet and IL-2, while CD4 T helper 2 transcriptional 

factor Gata 3 and IL-4  are reduced, indicating the importance of CD4+ T helper 1 

response in controlling Salmonella infection (Lin, et al., 2008). 

Polarisation of CD4+ T cells towards CD4+ T helper 2 cells in Salmonella infection is 

dictated by IL-4 and IL-10 (Ramarathinam, et al., 1993). A study by Srinivasan  et al, 

showed that intestinal environment (immune regulatory) may also promote APCs to 

signal recently activated CD4+ T cells towards CD4+ T helper 2 cells (Srinivasan & 

McSorley, 2006). IL-4 and IL-10 play an inhibitory role of CD4+ T helper 1 mediated 

response against Salmonella (Ramarathinam, et al., 1993). IL-4 knockout mice efficiently 

control Salmonella infection compared to wild type following Salmonella oral challenge, 

suggesting that IL-4 promote salmonellosis progression (Ramarathinam, et al., 1993).  
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Emerging evidence from animal studies suggests that CD4+ T helper 17 (Th17) cells 

have a role in controlling Salmonella infection (Raffatellu, et al., 2008). In simian 

immunodeficiency virus (SIV) infected macaques (human HIV infected model), CD4+ 

Th17 cells in the ileal mucosa of rhesus macaques are depleted and this impairs mucosal 

barrier functions (blunted Th17 responses) resulting in increased systemic dissemination 

of S. Typhimurium from the gut (Raffatellu, et al., 2008). Furthermore, Th17 cells have 

been implicated in controlling extracellular bacterial infection in the gut thereby avoiding 

systemic dissemination of the pathogen (Raffatellu, et al., 2008, Blaschitz & Raffatellu, 

2010). Cytokines; IL1, IL-6, IL-23 and TGF-β1 and transcriptional factor Roγt are 

required for CD4+ T cell differentiation towards Th17 cells and their subsequent 

expansion (Chen & O'Shea, 2008). The contribution of Th17 immunity in controlling 

NTS bacteraemia in humans has not been investigated.   
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Figure 1. 9:  CD4+ T cell plasticity in response to Salmonella antigens 

The polarization of  Th1, Th2 and Th17 immunity is dictated by several factors including 

the infecting pathogen (Salmonella) or components (LPS, flagellin and OMP), cytokines 

profile generated by naïve cells including macrophage and natural killer cells (IL-12 

drive Th1 while IL-6, IL-1 and TNF-α drive Th2). In turn- CD4+ T cells generate pro-

inflammatory; IFN-γ and IL-2 (Th1 immunity) or anti-inflammatory; IL-4, IL-6 and IL-

10 (Th2 immunity) that up regulates and down regulates macrophages bactericidal 

machinery respectively. IL1, IL-6, IL-23 and TGF-β1 are required for CD4 T cell 

differentiation to Th17 cells and their subsequent expansion 
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1.6.3.3  B cell immunity to Salmonella infection 

B cells play an important role in protection against Salmonella. Antibody production is 

the dominant function of B cells, but they are also involved in antigen presentation to T 

cells. Salmonella are facultative intracellular organism and are capable of surviving in 

both the extracellular and intracellular space. It is thought that extracellular Salmonella 

are mainly controlled by antibody mediated immunity (MacLennan, et al., 2008). 

Salmonella in the extracellular space might have result from escaping neutrophil and 

macrophage mediated immunity. Opsonic IgG or IgM antibodies specific for S. 

Typhimurium control Salmonella bacteraemia by activating complement cascade through 

the classical pathway which are  ultimately killed through membrane attack complex 

(MacLennan, et al., 2008). Opsonic IgG or IgM antibodies specific for S. Typhimurium 

also control Salmonella bacteraemia by facilitating efficient neutrophils and monocytes 

phagocytosis through their surface membrane FcR (Uppington, et al., 2006) and the 

engulfed Salmonella are killed by respiratory burst (Gondwe, et al., 2010).  

MacLennan et al showed in Malawian children that antibody mediated serum killing of 

invasive NTS strain occurs in children >16 months of age and not in younger children 

(MacLennan, et al., 2008), indicating the requirement of mature NTS-specific antibodies 

(IgG and IgM) in this immunity (MacLennan, et al., 2008). Interestingly, a similar trend 

(age related development) of antibody mediated serum immunity to S. Typhi was 

reported in children from Nepal (Pulickal, et al., 2009). Furthermore, Xu and colleagues 

showed positive correlation  of Salmonella-specific antibody titres with resistance to 

lethal challenge with S. Typhimurium in  vaccinated genetically susceptible C57BL/BL 
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mice (Xu, et al., 1993). These findings support the exploration of an antibody-based 

vaccine for NTS bacteraemia. 

The production of Salmonella-specific IgG, IgM and IgA antibodies are increased during 

Salmonella disease. Anti-IgG titres to Salmonella LPS, flagellin and membrane proteins 

(MP) are higher in Salmonella infected patients compared to healthy controls (Lee, et al., 

Choo, et al., 1997, Strid, et al., 2007). Limited studies have explored the longevity of 

immune responses triggered naturally by Salmonella infection, to determine whether or 

not protection to subsequent infection is conferred. Longevity of IgG-antibodies targeting  

S. Typhi membrane protein (MP) in Malaysian children with typhoid fever (clinical 

typhoid fever, blood or stool culture positive or Widal test positive) 21 months into the 

recovery period was explored. At 6 months  into  the recovery period 50% of typhoid 

cases had detectable IgG antibody responses-specific for MP (positive dot enzyme 

immunosorbent assay [dot EIA]) and these responses declined to 30% at 12 months 

(Choo, et al., 1997). These findings suggest the longevity of these IgG-specific antibody 

responses triggered by natural Salmonella infection might mimics those induced by 

vaccination. Evidence on protection conferred by natural Salmonella exposure is elusive.  

 

1.6.3.4  B cell and T cell interactions in response to Salmonella infection 

Cellular interactions between B cells and T cells are important for development of robust 

immunity to Salmonella and other pathogens (Mastroeni & Menager, 2003). During 

secondary humoral response, B cells also function as APCs. This is evidenced by
 
reduced 
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ability to produce IFN-γ and IL-2 by CD4+ T cells isolated from B-cell-deficient Igh-

6
−/−

 mice immunized with live attenuated Salmonella (Mastroeni, et al., 2000). 

Immunized Igh-6
−/−

 mice also fail to control the growth of virulent Salmonella in 

secondary infection (Mastroeni, et al., 2000, McSorley & Jenkins, 2000, Mittrucker, et 

al., 2000). On the other hand, B cells generation of class switched and high affinity 

antibodies is dependent on T cells help (Figure 1.11) (Mittrucker, et al., 1999). This is 

proved in T cell deficient mice (athymic nu/nu mice), when vaccinated with live 

attenuated Salmonella fail to generate high affinity antibodies including  IgG1, IgG2A 

and IgG2B instead generate low affinity antibodies such as IgM and IgG3 against 

Salmonella LPS (Mastroeni & Menager, 2003). Essentially, interaction between CD4+ T 

cells and B cells is important for establishment long-term and robust  CD4+ T cells and 

antibody immunity to Salmonella infection (Mastroeni, 2002, Takemori, et al., 2014).     
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Figure 1. 10: Generation of high affinity and class-switched antibodies through B 

cell and T cells interaction 

Primed B cells also function as APC to CD4+ T cells. Primed CD4+ T cells provide help 

primed B cells to generate memory response, class-switch antibodies and high affinity 

antibodies specific for Salmonella. 
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1.6.4  Clinical features and immunity to Salmonella exposure within the GIT 

1.6.4.1 Normal  flora resistance to enteric pathogens 

Normal flora in the gastrointestinal tract (GIT) is present in large numbers particularly in 

the colon and lower intestine (Hooper & Gordon, 2001, Sekirov, et al., 2010). Normal 

flora provides colonisation resistance of the intestinal lumen to enteric pathogens 

including Salmonella (Endt, et al., 2010, Stecher & Hardt, 2011). Three mechanisms of 

intestinal microbiota-mediated colonisation resistance have been clearly defined 

including direct inhibition of the pathogen by antimicrobial effector molecules 

(bacteriocins, metabolic by-products), efficient competition for nutrients by shutting 

down all potentially available nutrient niches for the pathogen and  indirect inhibition by 

stimulating the host’s antimicrobial defence system (defensins, mucin and secretory IgA) 

(Stecher & Hardt, 2011). In the event that antibiotics (particularly broad-spectrum 

antibiotics) are administered the protective role of the normal flora is compromised 

(Miller, et al., 1954). Antibiotics can kill large numbers of commensal gut bacteria and 

thereby favouring an ecological niche of opportunistic pathogen such as Salmonella.   

 

1.6.4.2 Symptomatic Salmonella exposure: diarrhoea  

Enteric pathogen exposure within the GIT may be accompanied by gastrointestinal 

symptoms such as diarrhoea and this may be followed by carriage. The mechanisms 

underlying Salmonella diarrhoeal disease have not been clearly elucidated in humans.  

Generally the presence or absence of symptoms following Salmonella exposure within 
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the gut lumen may be dictated by the host immune response, pathogen virulence and the 

infecting dose. This has been demonstrated by modelling estimates of dose and  illness 

from  Salmonella outbreaks (Bollaerts, et al., 2008) and streptomycin mouse model for 

Salmonella diarrhoea (Kaiser, et al., 2012). Diarrhoea occurs when there is an altered 

movement of electrolytes and water that follows an osmotic gradient within the gut 

lumen, and this alterations is driven by enteric pathogens including Salmonella (Hodges 

& Gill, 2010). Salmonella are among the enteric pathogens that cause inflammatory 

diarrhoea and this primarily target the lower bowel, particularly the distal ileum and the 

colon (Navaneethan & Giannella, 2008). Salmonella causes inflammatory diarrhoea and 

is characterised by presence of neutrophils (Zeng, et al., 2003, Raffatellu, et al., 2005). 

Neutrophils regulate absorption through cytokine secretion and generation of precursors 

such as adenosine and secretagogue that activates the cystic fibrosis transmembrane 

receptor (CFTR), a Cl
-
 channel

 
(Navaneethan & Giannella, 2008, Hodges & Gill, 2010) 

(Figure 1: 11). Taken together Salmonella causes inflammatory diarrhoea and this is 

characterised by influx of neutrophils, increased secretion of Cl
-
 in the gut lumen 

following CFTR activation and the general reduced absorption.  

 

1.6.4.3 Duration of NTS shedding  

Evidence of Salmonella exposure to the GIT relies on stool cultures. Several factors are 

thought to govern the duration of Salmonella shedding including age, clinical 

presentation, antibiotic treatment and the anatomical site of carriage. In patients with 
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NTS  infection within the intestinal tract, Salmonella faecal shedding is usually short, 

ranging from 4 to 8 weeks in children and adults (Buchwald & Blaser, 1984). However 

the duration of NTS shedding is normally longer in children less than five years 

compared to older children and adults (Buchwald & Blaser, 1984). Antimicrobial 

treatment of acute Salmonellosis has been implicated to prolong the duration of faecal 

Salmonella shedding (Dixon, 1965, Levine, et al., 1982). Persistent NTS shedding for a 

period longer than 1 year (formal definition chronic carrier) is very rare (might occur in 

<1%) (Musher & Rubenstein, 1973, Buchwald & Blaser, 1984). The location of 

persistent foci in NTS infection is unknown, although cholelithiasis has been documented 

in about 40% of Salmonella carriers (Musher & Rubenstein, 1973). Taken together, these 

findings show that NTS chronic carriage is rare, but shedding of NTS even for shorter 

duration could be a way of transmitting NTS infection in animals and humans. 

 

1.6.4.4 Evidence of immunity to Salmonella disease within the GIT 

Exposure of Salmonella within the GIT is likely an immunizing event. Diarrhoea 

resulting for enteric pathogen exposure in naïve children is typically severe and faecal 

shedding lasts longer compared to subsequent diarrhoea episode  (Buchwald & Blaser, 

1984, Pitzinger, et al., 1991, Steffen, 2005). Similarly  travellers’ diarrhoea is usually 

severe with longer duration of faecal shedding in visitors from enteric pathogens non-

endemic countries compared to diarrhoea in native subjects from enteric pathogens 

endemic countries (Steffen, 2005). These observations support the notion that Salmonella 

exposure within the GIT does confer protection to subsequent specific infection within 
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the GIT. Whether this protection induced by Salmonella exposure within the GIT can 

provide protection against Salmonella blood stream infection (BSI) is a key question.  

Furthermore, it was demonstrated  in the mouse model of diarrhoea that perioral 

treatment with ciprofloxacin of S. Typhimurium  a  disrupts  adaptive immunity to S. 

Typhimurium while parenteral ceftriaxone does not disrupt development of  adaptive 

immunity (Endt, et al., 2012). Selection of antibiotics for intestinal localised Salmonella 

infections must take into account the impact on establishment of natural immunity and 

sensitivity of Salmonella to the antibiotics. This area has received limited attention and 

need further investigations to ascertain the impact of drug selection for treatment of 

Salmonella and subsequent establishment of natural immunity.  

 

 

Figure 1. 11: Protective immunity following Salmonella exposure within the GIT 
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Low dosage of NTS in the gut lumen and the balance between NTS and normal flora 

might dictate asymptomatic colonisation. This balance might however permit NTS to 

exist in the gut lumen for longer periods and faecal shedding could be detected. The 

imbalance between the NTS and normal flora dictate symptomatic colonisation of the gut 

lumen which is associated with the influx of the neutrophils and electrolyte imbalance. 

These processes result in diarrhoea with or without detectable faecal shedding. During 

the initial NTS attack the diarrhoea is usually severe and the duration of shedding and 

diarrhoea is longer. While during the second NTS attack the diarrhoea is less severe and 

the duration shedding and diarrhoea is shorter, perhaps due to the protective immunity 

induced during the previous attack. 

 

1.6.5 Immunological lessons drawn from humans that are vulnerable to iNTS 

1.6.5.1 Malnutrition is commonly associated with NTS bacteraemia 

NTS bacteraemia is commonly associated with malnutrition in SSA (Graham, et al., 

2000, Babirekere-Iriso, et al., 2006). The mechanism underlying susceptibility to NTS 

bacteraemia in malnourished children has not been elucidated in humans. Since 

malnourished children exhibit a leaky gut (Reynolds, et al., 1996), it is possible that 

impaired gut integrity in malnourished children permit the spread of Salmonella from the 

gut lumen through the gut mucosa and submucosa, and subsequently spread to systemic 

circulation (Reynolds, et al., 1996). Rehabilitation of malnourished children may restore 
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the gut mucosa barrier and restricts spread of enteric pathogens including Salmonella into 

systemic circulation, but this is unproven.  

 

1.6.5.2 Malaria and Salmonella bacteraemia co-infection infection (Neutrophils and 

monocytes)  

Both malaria and Salmonella bacteraemia remain important causes of death among 

under-five children in SSA (Guinovart, et al., 2006, Reddy, et al., 2010). NTS 

bacteraemia is commonly associated with malaria infection, particularly severe malarial 

anaemia (Bronzan, et al., 2007). Case fatality rate is higher in children presenting to 

hospital with severe malaria anaemia and bacteraemia co-infection compared to malaria 

infection alone (Bassat, et al., 2009). This is in part due to indistinguishable clinical 

presentation of NTS bacteraemia, and lack of diagnostics in poor resource settings. 

Children are diagnosed and treated for malaria infection while NTS bacteraemia is 

unattended. The association between malaria infection and NTS bacteraemia in Africa 

was first reported in the 1920s (Graham, 2010). Biggs et al recently demonstrated NTS 

bacteraemia and malaria infection co-infection was common among febrile paediatric 

inpatients (aged 2 months to 13 years) from low altitude  and high malaria transmission 

area compared to those from high altitude and low malaria transmission area in Tanzania 

(Biggs, et al., 2014). In contrast to NTS bacteraemia pattern, S. Typhi bacteraemia was 

uncommon in febrile paediatric inpatients from low altitude and high malaria 
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transmission  area (Biggs, et al., 2014). These findings underlie the differences in the 

burden and mode host susceptibility of S. Typhi and NTS among children from SSA. 

The mechanism underlying association between NTS bacteraemia and malaria co-

infection is not clear. It has been shown that the reduction in neutrophil oxidative burst 

activity, reduction in IL-12 levels and increased levels of IL-10 in malaria infected mice 

play a role in impairing  immunity to NTS (Roux, et al., 2010, Cunnington, et al., 2012, 

Maclennan, 2014). Together these studies suggest that compromised neutrophil immunity 

against malaria and increased inhibitory cytokines favours NTS growth and perhaps 

dissemination to systemic organs. These mechanisms have not been investigated 

thoroughly in humans.   

 

1.6.5.3 Cellular and humoral immune responses in HIV infected individuals 

NTS bacteraemia is common in HIV infected individuals worldwide. Impaired antibody 

and cellular immunity have been implicated. MacLennan et al demonstrated that HIV 

infected adults exhibit significantly high levels of anti-Salmonella IgG titres targeting S. 

Typhimurium-LPS O antigen compared to healthy adults and these antibodies were 

inhibitory as they block bactericidal anti-Salmonella IgG antibodies targeting S. 

Typhimurium-outer membrane protein (OMP) (MacLennan, et al., 2010). Whether or not 

S. Typhimurium-specific IgG antibodies in HIV infected individuals are class switched or 

high affinity antibodies is not clear.   
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Gordon et al  demonstrated that low absolute CD4+ T cells in HIV infected individuals 

correlate independently with viable NTS in peripheral blood, suggesting failure to clear 

intracellular infection in advanced HIV (Gordon, et al., 2010). In keeping with these 

observations, Raffatellu et al demonstrated that simian immunodeficiency virus (SIV) 

infection results in depletion of Th17 cells (subset of CD4+ T cells) in the ileal mucosa of 

rhesus macaques, thereby impairing mucosal barrier functions to S. Typhimurium and 

this subsequently promotes S. Typhimurium spread to distant tissues (Raffatellu, et al., 

2008).   

A recent transcriptome study in HIV infected adults with NTS bacteraemia showed 

attenuated NFќB inflammation while NFќB inflammation was normal in controls with 

other common extracellular bacteraemia (Schreiber, et al., 2011). NFκB signalling 

pathway plays a key role in signalling downstream activities including cell proliferation 

and pro-inflammatory cytokine generation (including IFN-γ). In keeping with these 

findings, Gordon et al demonstrated dysregulation of  pro-inflammatory cytokine 

(including IL-12) production by macrophages in adults with advanced HIV in responses 

to Salmonella (Gordon, et al., 2007) and also impaired  NTS internalisation and killing 

by the macrophages even in the presence of  exogenous IFN-γ (Gordon, et al., 2007).  

Furthermore, immunohistochemistry studies have revealed that the architecture of 

lymphoid tissues are disorganised in HIV infected subjects (Alos, et al., 2005), 

suggesting disorganisation of the lymphoid tissues underline compromised immunity to 

pathogens including Salmonella in HIV infected subjects, since mounting of effective 

adaptive immunity is dependent on proper machinery of the lymphoid tissue. There is 
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evidence that ARV therapy restores the loss of CD4+ T cells to relatively normal counts 

(Guadalupe, et al., 2003) and cases of BSI including Salmonella bacteraemia have 

reduced tremendously in HIV infected Malawian adults following the roll out of   

Antiretroviral therapy (ART) and Cotrimoxazole preventative therapy (CPT) (Feasey, et 

al., 2014). Whether or not ART therapy restores the organisation of lymphoid tissues and 

function of the adaptive immunity to Salmonella infection in HIV infected individuals is 

not clear. A study on Malawian children who were chronically infected with HIV 

receiving ART showed delayed restoration of memory B cells compared to CD4+ T cells 

and B cell function specific for pneumococcal protein antigen was also delayed 

(Iwajomo, et al., 2014). Another study on Malawian adults infected with HIV receiving 

ART showed that recovery of pneumococcal CD4+ T cells at 12 months following ART 

initiation  and incomplete recovery of CD4+ T cell function (CD154 expression  and 

production of antigen specific IFN-γ) (Sepako, et al., 2014). Together these findings 

suggest that ART therapy incompletely restores B cell and T cell immunity in HIV 

infected individuals. 

 

1.7  VACCINES 

In this section, discussion focusses on vaccine development status for both S. Typhi and 

NTS bacteraemia. Two currently licenced vaccines (Oral Ty21a and Vi CPS) for S. Typhi 

and also new generation vaccines are reviewed. No human vaccine is licenced for NTS 

and discussion dwells on progress made in exploring NTS vaccine candidates.  
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1.7.1 Oral Ty21a vaccine 

Oral Ty21a is a vaccine for  typhoid fever and was generated in the 1970s following 

chemical mutagenesis of the wild type strain S. Typhi Ty2 and does not express the Vi 

polysaccharide and galE gene (Germanier & Fuer, 1975, Guzman, et al., 2006). Ty21a 

(Vivotif) contains attenuated S. Typhi Ty2 in lyophised form, and each capsule contains 

no less than 2x10
9
 viable cells (Guzman, et al., 2006). Oral Ty21a vaccine is 

administered in children above 6 years and adults. Three doses of Ty21a vaccine are 

recommended worldwide, but  other countries including  Canada and  USA opt to 

provide four doses (Guzman, et al., 2006). One capsule is taken on days 1, 3 and 5 with 

lukewarm water at least 1 hour before meal (Pasetti, et al., 2011). Clinical trials for oral 

Ty21a vaccine showed that it is extremely safe and well tolerated (Olanratmanee, et al., 

1992). Common adverse effects (AEs) reported include mild gastrointestinal disturbances 

and fever (Guzman, et al., 2006). A meta-analysis showed overall three years cumulative 

protective efficacy of 51% (Fraser, et al., 2007). Furthermore, immunogenicity studies 

demonstrated that oral Ty21a vaccine induces both antibody and T cell mediated 

immunity. However oral Ty21a vaccine requires multiple doses to elicit a protective 

response, even after booster doses the vaccine confers incomplete protection. To address 

oral Ty21a vaccine shortfalls a number of novel live attenuated S. Typhi vaccine 

candidates have been developed including Ty800, CVD 908, CVD 908-htrA, CVD 909 

and M01ZH09 (Tacket, et al., 2000, Tacket & Levine, 2007, Wahid, et al., 2011). 

Unfortunately none of these new live attenuated vaccines are currently licensed as 

typhoid vaccines (Table 1-B).  
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1.7.2 Vi capsular polysaccharide vaccine 

Vi capsular polysaccharide vaccine (Vi CPV) for typhoid fever was licenced in 1994. Vi 

CPV is now available in >90 countries and is administered as a single or multiple doses 

intramuscularly (Martin, 2012). The vaccine induces acquisition of serum anti-Vi IgG 

and these have been shown to correlate with efficacy (Hessel, et al., 1999). Vi CPV 

confers about 70% protection for up to 3 years in children aged >2 years  and adults 

(Tacket, et al., 1986). Interestingly, in populations where Vi CPV have been 

implemented, cases of typhoid fever have been reduced (Khan, et al., 2010). In Kolkata, 

among children aged 2 and 5 years, a cluster randomised trial of Vi CPV demonstrated a 

low transmission and herd immunity amongst controls (Sur, et al., 2009). The pitfalls of 

Vi CPV include; lack of immunogenicity in children below 2 years, shorter duration of 

protection and the need for repeated doses (Robbins & Robbins, 1984, Tacket, et al., 

1988, Hessel, et al., 1999). Furthermore, Vi CPV lack memory response and even with 

repeated doses, immune responses are not boosted (Kantele, et al., 2012). In pursuit of 

better vaccine for typhoid fever, glycoconjugates vaccines appear to be promising. 

Glycoconjugate vaccines induces T cell immune responses that provides help to  

antibodies against Vi and O-antigens through covalent linkage to protein carrier 

molecules (Maclennan, et al., 2014). The glycoconjugate strategy for generation of new 

Salmonella vaccines is principally an antibody approach and to date a number of the 

vaccine have been generated including Vi-TT, Vi-rEPA, Vi-CRM and Vi-DT 

(Maclennan, et al., 2014). Importantly, the Vi-TT and Vi-rEPA are already licenced for 
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in-country use in India and China respectively (Maclennan, et al., 2014) (Table 1-A and 

Table 1-B).   

 

1.7.3 Vaccine candidates for Salmonella bacteraemia 

No human vaccine is currently available for S. Typhimurium, S. Enteritidis, and S. 

Paratyphi A and B. Efficacy for two licenced vaccines for S. Typhi (Vi CPV and Ty21a) 

are poor and it is not known whether they could provide cross-protection to NTS. 

Antibodies to Salmonella targeting moieties on the outer surface including Vi, O and H 

antigens of Salmonella are thought to mediate protection (Maclennan, et al., 2014). These 

antigens (Vi, O and H antigens) are highly immunogenic and have been proposed as 

vaccine candidates (Brenner, et al., 2000, Maclennan, et al., 2014).  

S. Typhimurium LPS has considerable potential as a vaccine target and is being develop 

as a conjugate vaccine to  overcome  short-lived T cell independent immunity elicited by 

LPS alone (MacLennan, 2013). In mice OMP and FliC induce both T cell and antibody 

immunity and are also being investigated as vaccine candidates (Simon, et al., 2011, 

Simon & Levine, 2012). Whether or not OMP or FliC co-administered or incorporated 

into conjugate vaccine would consolidate the protective efficacy is not known.    

A number of challenges have been noted in developing vaccines for NTS. For instance, 

flagellin is not constitutively expressed by S. Typhimurium during infection due to its 

phase variable expression and this might cause problems as a vaccine candidate 

(Maclennan, et al., 2014) . Immunisation with OmpC and OmpF and OmpD confers  
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protection in mice challenge studies (Cunningham, et al., 2007, Gat, et al., 2011) but the 

production of  purified Omp antigens is  complicated by multiple spanning domains 

(Maclennan, et al., 2014).  

Generalized Modules from Membrane Antigens (GMMA) technology provide an 

innovative strategy (purification is straight forward and economical) to maintain the 

conformation integrity of Salmonella antigen (Maclennan, et al., 2014). GMMA vaccines 

can deliver both surface polysaccharides and outer membrane proteins to the immune 

system and are more immunogenic compared to the glycoconjugate vaccine in mice 

(Maclennan, et al., 2014). GMMA reactogenicity and immunogenicity in humans are not 

known. 

In the recent years protein arrays have enabled the screening of sera for antibodies 

targeting thousands of Salmonella proteins. Lee et al recently identified  potential vaccine 

candidates including SseB  by uncovering overlapping antibodies targeting  protein 

antigens in serum from mice immunised with live attenuated  Salmonella and  children 

convalescing from invasive NTS disease (Lee, et al., 2012). Furthermore, important 

Salmonella protein antigens including PagC, OmpA, Hly-E and GroEL that are targeted 

by the host immunity were uncovered in a study of  Bangladeshi patients with acute 

typhoid and those with febrile illness due to other causes (Charles, et al., 2010). These 

antigens are now being explored to evaluate their potential to induce protection, 

particularly as subunit vaccine in pre-clinical phase (Lee, et al., 2012). Protein arrays 

approach in the discovery of candidate vaccine targets will help in refining the current 

vaccines and generation of better novel vaccines for Salmonella.   
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As part of vaccine broader strategy in development of Salmonella vaccines, it will be 

important to ensure that the immunity generated by a candidate vaccine is cross-

protective (targeting S. Typhi, S. Paratyphi, S. Typhimurium, and S. Enteritidis, S. Dublin 

and S. Stanleyville). O-antigen based conjugated vaccines might offer cross-protection 

against other non-encapsulated serovars within the same group. Other groups have 

proposed to generate a multivalent vaccine made of 5-6 conjugates covering all invasive 

Salmonella disease (Simon & Levine, 2012, Maclennan, et al., 2014) 
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Table 1-A: Licensed vaccine for S. Typhi 

Vaccine 

type 

Vaccine  Description   Advantage  Disadvantage  

Live 

attenuated 

Ty21a  

(Licenced  for 

adults and 

children > 5 yrs) 

(Germanier & 

Fuer, 1975, 

Guzman, et al., 

2006) 

S. Typhi Ty2 

mutation in Vi 

polysaccharide 

and galE gene 

Some cross 

protection 

against S. 

paratyphi B 

Not licenced for 

infants  and low 

efficacy  

Vi Vi CPV 

(Licenced  for 

adults and 

children > 2 yrs) 

(Khan, et al., 

2010) 

 

S. Typhi purified 

Vi 

Single dose 

and low 

reactogenicity  

Not licenced for 

infants. Low 

efficacy. Lack of 

memory and 

affinity 

maturation. Only 

protects against 

S. Typhi 

Vi 

conjugate 

Vi-EPA 

(Licenced in 

China) (Szu, 

2013) 

 

S. Typhi Vi 

conjugated to 

recombinant P. 

aeruginosa 

exoprotein A 

T dependent 

antibody 

response for 

memory 

induction and 

affinity 

maturation. 

Low 

reactogenicity  

Only protects 

against S. Typhi 

Vi-tetanus toxoid 

(Licenced in  India) 

(Szu, 2013) 

S. Typhi Vi 

conjugated to 

tetanus toxoid 
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Table 1-B: Vaccines under development targeting Salmonella serovars 

Type Vaccine  Description   Advantage  Disadvantage 

New live 

attenuated oral 

M01ZH09 (Hindle, et 

al., 2002, Kirkpatrick, 

et al., 2006) 

Mutation in 

phoP/phoQ 

 

B and T cell 

immunity 

 

Reduced need for 

multiple dosing 

Breadth of coverage 

may be limited by 

insufficient 

expression of key 

antigens 
Ty800 (Hohmann, et 

al., 1996) 

Mutation in aroC, 

ssaV 

CVD 908-htrA 

(Tacket, et al., 2004) 

Mutation in aroC, 

aroD, htrA 

CVD 909 (Wahid, et 

al., 2007) 

Mutation in aroC, 

aroD and htrA, 

constitutively 

expresses Vi 

Vi  conjugate Vi-diphtheria toxoid 

(Szu, 2013) 

Vi conjugated to 

diphtheria toxoid 

T dependent 

antibody 

response.  Low 

reactogenicity  

Only protects 

against S. Typhi 

Vi-CRM (van 

Damme, et al., 2011, 

Bhutta, et al., 2014) 

Citrobacter Vi 

conjugated to 

diphtheria toxoid  

Combination 

conjugate 

O-polysaccharide 

conjugate plus Vi-

conjugate (Simon & 

Levine, 2012) 

Paratyphi A O-

polysaccharide 

conjugate to carrier 

protein formulated 

with Vi-conjugated 

Broader coverage 

with a single 

vaccine 

 

Recombinant 

proteins 

OmpC, OmpF and 

OmpA(Toobak, et al., 

2013) 

 B and T cell 

immunity  

Antigen 

conformation may 

limit ability to 

induce B cell 

immunity 

Proteins 

purified from 

whole 

Salmonella 

OmpC and OmpF 

(Salazar-Gonzalez, et 

al., 2004, Secundino, 

et al., 2006), OmpD 

(Cunningham, et al., 

2007) 

 B and T cell 

immunity. 

Potential for pan 

immunity 

Purification of  

integral  membrane 

proteins difficult 

GMMA S. Typhimurium and 

S. Enteritidis GMMA 

(MacLennan, 2013) 

S. Typhimurium 

and S. Enteritidis 

GMMA 

Potential for pan 

immunity.  Easy 

to manufacture 

and at low cost 

Reactogenicity and 

immunogenicity in 

man not known 
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1.8  RATIONALE 

NTS and S. Typhi bacteraemia remain important public health problem in Malawi and 

elsewhere in Africa and Asia. Currently, there’s no vaccine for NTS bacteraemia and the 

vaccines available for S. Typhi cannot be used in children in under 2 years. There’s is a 

knowledge gap as to what naturally constitutes protective immunity to invasive 

Salmonella disease and how this develops in children from Salmonella endemic regions 

to inform the development of an effective vaccine. This thesis investigates the following;  

1. Development of antibody and T cell immunity to Salmonella in healthy and 

invasive Salmonella infected Malawian children. 

2. Relationship between Salmonella exposure within the GIT and development of 

Salmonella-specific serum immunity in healthy Malawian children. 

3. Model natural Salmonella infection immunizing events within the gut mucosa by 

oral Ty21a typhoid vaccination in healthy adults from UK. 

The hypotheses investigated in this thesis are;  

1. Gut localized or systemic Salmonella exposure induces the development of 

antibody and T cell immunity that has the potential to protect against subsequent 

Salmonella infection and particularly invasive Salmonella disease. 

2. Oral Ty21a vaccination induces the development of Salmonella-specific T cells 

and these might provide insight into natural immunizing events occurring within 

the gut mucosal compartment.  
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CHAPTER 2: STUDY DESIGNS, PARTICIPANTS, MATERIALS AND 

METHODS 

 

2.1 DEVELOPMENT OF ADAPTIVE IMMUNITY TO NONTYPHOIDAL 

SALMONELLA IN MALAWIAN CHILDREN 

2.1.1 Study design and participants 

A prospective cross-sectional study was conducted among healthy Malawian children 

aged 0 to 60 months to characterise the acquisition of S. Typhimurium-specific T cell and 

antibody immunity with age. Study participants were children attending vaccination 

clinic, health check clinics and newborns in the maternity ward at Ndirande Health 

Centre (NHC). Furthermore adults were recruited in this study as controls. Following 

study approval by the College of Medicine  Ethics Committee (COMREC) (section 

2.1.6), the study team (including myself as the study investigator, research nurse and the 

MLW science communication team) conducted the study specific sensitization meetings 

with NHC healthy workers (Clinicians, Nurses and Healthy Surveillance Assistants) and 

Ndirande community leaders (headmen and religious leaders). These sensitization 

meetings were aimed at bringing awareness of the research study at NHC and focussed 

on discussing information contained in the study information sheets. Study specific 

sensitization meetings are useful as they help to eliminate misinformation about the 

research study objectives, rationale and specific procedures. The recruitment process was 

conducted by the study research nurse. Recruitment process began with group 
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sensitisation talk given to parents and guardians attending NHC. Children’s parents and 

guardians who were keen to participate in the study were sensitised individually and their 

child recruited into the study provided they consented. Study participants were recruited 

consecutively provided they were meeting entry criteria including the specific age group 

(Figure 2.1 and section 2.1.3). Study specific samples were collected by the research 

nurse and transported to the laboratory for immunological investigations (section 2.1.7). 

 

Figure 2. 1: Study design; Development of adaptive immunity to NTS  

Eighty healthy Malawian children of varying ages (0-60 months) as indicated in figure 

2.1, were recruited. Twenty healthy adults were also recruited in the study as controls. 

5ml venous blood was collected from all children except for 0 month group (newborns), 

where blood was collected from the umbilical cord of the placenta post-delivery. Blood 

samples were collected and processed as described in methods section 2.1.7. 
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2.1.2 Sample size 

When this study was being conducted there were no data on how variable the responses 

would be, and how they might vary with age. To illustrate the power of the study to 

detect an effect the situation that the relationship of immune response (Salmonella-

specific T cells producing cytokines) to age is linear was considered. With 80 subjects 

whose ages ranged from  0 to 60 months (resulting in a standard deviation for age (years) 

of about 1.4) there is  80% power to detect that the slope of the line differs from zero at 

the 5% significance level if the slope is at least 0.21 standard deviation / year of age.  

 

2.1.3 Inclusion and exclusion criteria  

Children aged between 0 and 60 months were recruited provided they were medically 

well. Study exclusion included; children presenting to NHC with fever >38°C, severe 

malnutrition (weight-for-age<60% or weight-for-height<80%), malaria parasitaemia, date 

of birth (exact age) not known, known HIV-positive (documented in child health 

passport) or clinical HIV/AIDS and those that tested positive using rapid HIV tests 

(children aged <18 months) (who tested positive  were referred to early infant diagnosis 

(EID) clinic  for HIV-DNA confirmatory test). HIV exposed children (born from HIV 

infected mothers), either uninfected or infected were also excluded from the study. 
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2.1.4 Study location  

Participants were recruited at NHC (vaccination clinic, under-five clinic and maternity 

ward) in Blantyre district. NHC provide primary health care within the Blantyre city. 

According to Blantyre district health office (DHO) and QECH 2010/2011 annual report, 

it was projected that NHC to have catchment population (those receiving service from the 

health facility) of about 221,217 in the year 2012 (MCI, 2013). Blood was collected from 

study participants at NHC and   transported at room temperature (RT) to Malawi 

Liverpool Wellcome Trust Laboratories (MLW) located at Queen Elizabeth Central 

Hospital (QECH), Blantyre for immunological investigations. 

 

2.1.5 Blood stream infection surveillance   

Queen Elizabeth Central Hospital (QECH) is a 1,250 bed teaching hospital and the 

largest government hospital in Malawi, providing free health care to Blantyre district 

(population approximately 1 million). QECH is the only inpatient paediatric facility for 

non-fee paying patients in Blantyre. MLW has been conducting routine blood stream 

infection (BSI) surveillance of febrile children presenting to QECH since 1997. MLW 

team (including laboratory technicians, research nurses and clinicians) performed these 

experiments. Blood-cultures are obtained from febrile children who are thick-film-

negative for malaria parasites or critically ill, irrespective of malaria infection. Blood-

culture is undertaken using a paediatric bottle BacT/Alert® PF (BioMerieux, UK) and 

isolates identified using standard techniques (Gordon, et al., 2002). 
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2.1.6 Ethical consideration 

The study was compliant with Good Clinical Practice (GCP) regulations and conducted 

in accordance with the 1996 ICH GCP guidelines and the 2000 Declaration of Helsinki. 

Ethical approval (protocol number P.08/09/815) was granted by the College of Medicine 

Ethics Committee (COMREC). Informed consent was obtained from a parent or guardian 

of each participating child. 

2.1.7 Laboratory methods 

2.1.7.1 Collection of peripheral blood sample 

Venous blood samples were collected by an experienced study research nurse. A 

tourniquet was applied and the site for venipuncture sterilized with alcohol prep. The 

needle was inserted into the selected vein and a total of 5 ml of blood was drawn from 

each child. Blood was transferred into appropriate tubes i.e. 1ml BD vacutainer® serum 

tube, 3ml BD vacutainer® sodium heparin and 1ml BD microtainer® 

ethylenediaminetetraacetic acid (EDTA) (all Becton Dickinson, USA) and transported to 

the laboratory for testing. 

 

2.1.7.2 Collection of umbilical cord blood samples 

The umbilical cord blood specimen was collected by experience study nurse ex-utero as 

previously described (Pafumi, et al., 2011) with minor modifications. The placenta was 

placed on a sterile cloth and the umbilical cord was allowed to hang down over the side. 
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The umbilical cord and the blood vessel were cleaned and disinfected with betadine 

solution and alcohol. 5ml of cord blood was drawn from several places where necessary 

using a sterile needle and syringe. Blood was transferred into appropriate tubes i.e. 1ml 

BD vacutainer® serum tube, 3ml BD vacutainer® sodium heparin and 1ml BD 

microtainer® EDTA (all Becton Dickinson, USA) and transported to the laboratory for 

testing. 

 

2.1.7.3 HIV testing  

Children with unknown HIV status were tested using HIV rapid test kits, according to 

national guidelines. Finger prick blood was collected using an EDTA coagulated 

capillary tube (Becton Dickinson, USA). Two rapid HIV test kits were used in parallel; 

Determine
TM

 HIV1/HIV2 (Abbott Laboratories, Japan) and Unigold
TM

 (Trinity Brotch, 

Dublin). A third test SD
TM

 Bioline HIV1/2 3.0 (Standard Diagnostics, Korea) was used as 

a tie-breaker in case of discrepant results. Testing was performed, according to the 

manufacturer’s instructions.  

 

2.1.7.4 Malaria testing  

Research study nurse collected blood from the finger prick using EDTA coagulated 

capillary tube (Becton Dickinson, USA) and prepared a thick smear for malaria parasite 

slides (MPS) by transferring a drop of blood from the capillary tube onto a clean labelled 

slide. A drop of blood on the slide was spread and air dried for 10 minutes at room 
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temperature. These slides were transported to Blantyre Malaria Project (BMP) 

Laboratory at NHC for malaria testing. The BMP laboratory team (Laboratory 

Technicians)  stained air dried slides with field stain A and B, air dried for 10 minutes at 

room temperature and examined on high power field (HPF) microscope as previously 

described (Bailey, et al., 2013), with minor modifications. Parasite examination was 

verified by another laboratory technician before results were released. 

 

2.1.7.5 Preparation and storage of serum  

A total of 1ml blood was collected in BD vacutainer® serum tube and transported to the 

laboratory within 4 hours. Cloated whole blood was centrifuged at 500g for 10 min and 

serum isolated. 200µl aliquots of serum were stored at -70°C until the day of testing.  

 

2.1.7.6 Preparation of live S. Typhimurium for SBA  

A well characterised S. Typhimurium strain D23580 (MacLennan, et al., 2008, Kingsley, 

et al., 2009) was grown on a Luria Bertani (LB) agar (Sigma Aldrich, USA) plate 

overnight and a single colony was selected and inoculated into 10ml Luria Bertani (LB) 

broth (Sigma Aldrich, USA). This is a clinical strain isolated from a HIV negative child 

in 2004, at the peak of a Blantyre multidrug-resistant (MDR), invasive NTS epidemic 

(MacLennan, et al., 2008, Kingsley, et al., 2009). The inoculated broth container was 

loosely capped to permit gas exchange and incubated at 37⁰C for 18-24 hours to achieve 
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stationary growth phase. The culture suspension was briefly vortexed and 100µl 

transferred into pre-warmed fresh 10ml LB broth, tightly-capped (to avoid spillage) and 

incubated at 37⁰C on a rocker plate (Stuart Scientific, Belgium) at 20 rpm for 2 hours, to 

achieve a log growth phase. Two 1.5ml aliquots of S. Typhimurium strain D23580 in log 

growth phase were made in 2ml micro tubes (Eppendorf, Hamburg, Germany) and 

centrifuged at 6000rpm for 5 minutes and the supernatants were discarded. S. 

Typhimurium strain D23580 pellets were washed thrice with 1ml sterile phosphate 

buffered saline (PBS) at 6000 rpm. S. Typhimurium strain D23580 pellets were re-

suspended in 500μl of PBS, and pooled to achieve approximately 1x10
8
 cfu/ml (Miles, et 

al., 1938). Viable S. Typhimurium strain D23580 colony forming units  were confirmed 

using the Miles and Misra as described before (Miles, et al., 1938). S. Typhimurium 

D23580 was diluted with PBS in 96 micro-well plates (Sarstedt, Germany), in 10-fold 

dilutions. LB agar plates were divided into 8 sections and in each section triplicates of 

10μl (S. Typhimurium strain D23580 preparation) from 96 micro-well plate were 

inoculated to the corresponding sections and aerobically incubated at 37⁰C for 24 hours. 

S. Typhimurium strain D23580 colony forming units (CFU) per ml were calculated as 

follows: CFU per ml = average number of colonies at each dilution x 100 (volume factor) 

x dilution factor. 
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2.1.7.7 Preparation of S. Typhimurium homogenate for T cell stimulation  

A single colony of S. Typhimurium strain D23580, from an LB agar plate, was inoculated 

into 10ml LB broth and incubated at 37⁰C for 18-24 hours. Two 5ml aliquots were 

centrifuged at 4,000rpm for 5 minutes and the supernatants were discarded. S. 

Typhimurium strain D23580 pellets from both tubes were re-suspended in 2.5ml of PBS 

and pooled in a single tube. Two 1ml aliquots were transferred in 2ml screw cap micro 

tube (Sarstedt, Germany) and topped up with 100μm beads (Biospec products, USA). S. 

Typhimurium strain D23580 aliquots were bead beaten using the Mini-Bead beater
TM

 

(Biospec products, USA) thrice, on high setting, for 120 seconds. The sample was 

inverted several times between each bead beating, to allow cooling. Samples were 

allowed to separate for 5 minutes and the bead-free supernatant portions were transferred 

into fresh 2ml screw cap micro tubes (Sarstedt, Germany). Protein concentration of S. 

Typhimurium strain D23580 homogenate and protein standards were determined using 

Thermo Scientific™ Bicinchoninic Acid (BCA) Protein assay (Thermo Scientific, UK). 

A standard curve was used to compute the S. Typhimurium strain D23580 homogenate 

protein concentration. The protein concentration was adjusted using sterile PBS, and S. 

Typhimurium strain D23580 homogenate aliquots at 100μg/ml were stored -20⁰C.  
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2.1.7.8 Intracellular cytokine staining for detection  cytokine producing T cells  

Intra-cellular cytokine staining (ICS) is an immunological technique that allows 

simultaneous detection and quantification of cytokine producing cytokine cells (T cells) 

at single cell level and detection of cellular phenotype (memory T cell subsets, CD4+ T 

cells). In addition this assay can detect cell viability and also proliferation. ICS for 

antigen specific T cells has been used as a marker of immune memory following natural 

infection and also in vaccine studies (De Rosa, 2012, Saade, et al., 2012, Freer & Rindi, 

2013). Taken together ICS for antigen specific T cells is both a functional and phenotype 

assay and can be used to evaluate immunogenicity, poly-functionality and memory 

profile.  

 

Whole blood (WB)  T cell ICS assay was performed as previously described (Nyirenda, 

et al., 2010)  with minor modifications. WB for ICS assay was collected in 3ml BD 

vacutainer® sodium heparin (Beckon Dickson, UK). 450μl aliquots of fresh WB were 

stimulated, on the day of collection with 50μl of bead-beaten S. Typhimurium strain 

D23580 at a final protein concentration of 1μg/ml, or with both phorbol myristate acetate 

(PMA) 1µg/ml and ionomycin (ION) at 10µg/ml (all Sigma Aldrich, USA). Furthermore, 

all conditions were co-stimulated with anti-CD28/49d (Becton Dickinson, USA), for 6 

hours at 37∘C in aerobic incubator. At 2 hours, intra-cellular cytokine release was 

inhibited with 1µl of BD GolgiStop™ (Becton Dickinson, USA) at 10
6 

cells/mL. At 6 

hours, cells from 200μl of each sample were lysed with 2ml of 1X FACs lysing solution 
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(Becton Dickinson, USA) then permeabilised with 500μl of 1X permeabilising solution 

(Becton Dickinson, USA). Cells were washed with PBS/0.5% bovine serum albumin 

(BSA) buffer (Sigma Aldrich, USA) and stained with 3μl each of surface antibodies: 

CD3-APC Cy7, CD4-PB (all Becton Dickinson, USA) and 5μl each of intra-cellular 

cytokine antibodies: IFN-γ-PE, TNF-α-FITC, and IL-2-APC (all Becton Dickinson, 

USA). Cells were fixed in 200μl 1% formaldehyde/PBS and 20,000 events on CD4+ T 

lymphocyte gate were acquired immediately using a CyAN ADP
TM

 flow cytometer 

(Beckman Coulter, USA). CD3+CD4+ T cells producing IFN-γ, TNF-α and IL-2 were 

defined as CD3+CD4+IFNγ+, CD3+CD4+TNFα+, and CD3+CD4+IL2+ (Figure 2.2). 

Further analysis for polyfunctional CD4+ T cells producing single, double and triple 

cytokines were further analysed by Boolean gates using Flow Jo
TM

 version 7.6.5 software 

(Tree star, USA).  
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Figure 2. 2: Gating strategy for CD4+ T cell producing cytokines 

Lymphocytes were gated using side scatter (SSC) and forward scatter (FSC) 

characteristics (Figure 2.2A). Lymphocytes expressing CD3 were gated from the 

lymphocytes gate (Figure 2.2A, 2.2B). CD3+CD4+ T cells were gated from the CD3+ 

lymphocyte gate (Figure 2.2B, 2.2C). CD3+CD4+ T cells producing IFN-γ were gated 

from CD3+CD4+ T cell gate (Figure 2.2C-F). Representative un-stimulated, S. 

Typhimurium strain D23580 and PMA/ION stimulated plots are shown (Figure 2.2D-F). 
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2.1.7.9 Immunopheno-typing for quantification of CD4+ memory  T cell subsets  

Immuno-phenotyping (IPT) is an immunological technique used to detect and quantify 

cellular proteins (such as CD3) which are bound by flourochrome conjugated antibodies 

or marker (such as CD3-APC) and these are read out by flow cytometry. IPT is  

commonly  used to detect and quantify memory CD4+ T cell subsets including effector 

memory (CD45RO+CCR7-), central memory (CD45RO+CCR7+)  and naïve (CD45RO-

CCR7+) (Mackay, et al., 1990, Bunce & Bell, 1997). Whole blood (WB) for immuno-

phenotyping was collected in 1ml BD microtainer® ethylenediaminetetraacetic acid 

(EDTA) (all Becton Dickinson, USA). 200µl of WB was stained with antibodies: CD3-

APC, CD4-PB, CD45RO-FITC and CCR7-PE (all Becton Dickinson, USA) and RBCs 

lysed with 2ml of 1X FACS lysing solution (Becton Dickinson, USA). Cells were 

washed with PBS (Sigma Aldrich, USA) and fixed in 200μl (1% formaldehyde/PBS). Up 

to 20,000 events on CD4+ T lymphocyte gate were acquired immediately on CyAN 

ADP
TM

 flow cytometer (Beckman Coulter, USA) and analysed using FlowJo
TM

 version 

7.6.5. Lymphocytes were gated by their forward scatter (FSC) and side scatter (SSC) 

characteristics. Naïve T cells were defined as CD4+CD45RO-CCR7+, effector memory 

(EM) T cells as CD4+CD45RO+CCR7- and central memory (CM) T cells as 

CD4+CD45RO+CCR7+ (Figure 2.3) (Mackay, et al., 1990, Bunce & Bell, 1997). 



Participants, Materials and Methods 
 

69 
 

C
D

4
  

P
B CD3+CD4+

55%

A

CD3  APC-H7

B

C
D

4
5

R
O

 F
IT

C
CCR7  PE

CM  27%

Naïve 61%

E
M

  
3

%

 

Figure 2. 3: Gating strategy for CD4+ memory T cells 

From the CD3+CD4+ T cell gate (Figure 2.3A) CD4+ memory T cells were defined by 

the expression of CD45RO and CCR7 as shown (Figure 2.3B). We defined naïve T cells 

as CD4+CD45RO-CCR7+, effector memory (EM) T cells as CD4+CD45RO+CCR7- and 

central memory (CM) T cells as CD4+CD45RO+CCR7+.   

 

2.1.7.10  Serum bactericidal assay for quantification of  antibody immunity  

Serum bactericidal activity (SBA) assays were performed as previously described 

(MacLennan, et al., 2008). Serum or PBS was mixed with S. Typhimurium strain D23580 

at 1.0x10
6
 cfu/ml (10µl of the prepared viable bacteria at 1 x10

7
 cfu/ml were added to 

90µl of undiluted freshly-thawed serum), prepared as described in section 2.1.7.6. Test 

samples were placed in a 37°C aerobic incubator for 180 minutes. Test samples were 
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serially diluted and plated in triplicate on Luria Bertani (LB) agar. Viable colony count of 

Salmonella was done after 24 hours of incubation as described in section 2.1.7.6. Log10 

change in S. Typhimurium cfu/ml from the baseline (PBS condition) was reported. As 

previously described (MacLennan, et al., 2008). 

 

2.1.7.11 Serum ELISA for quantification of anti-S. Typhimurium-IgG 

antibody 

Enzyme-linked immunosorbent assay (ELISA) is an immunological technique that has 

been applied for detection of memory B cell secreted antibodies to a specific antigen 

including Salmonella in serum or plasma. ELISA for detection of antibodies to specific 

pathogen has been used to evaluate immune responses elicited by a vaccine or natural 

infection, longevity of antibody responses, diagnosis of infection and surveillance 

(Carlsson, et al., 1975, Beasley, et al., 1981, Strid, et al., 2007). ELISA for detection of 

Salmonella specific antibodies were performed as previously described (Cunningham, et 

al., 2007) with minor modifications. Nunc-Immuno
™

 MicroWell
™

 96 well solid plates 

(Sigma Aldrich, USA)  were coated overnight using 100µl of carbonate-bicarbonate 

buffer (Sigma Aldrich, USA) per well containing antigens adjusted to 5µg/ml: S. 

Typhimurium O;4,5-LPS (ALEXIS Biochemicals), S. Typhimurium-OMP, S. 

Typhimurium-FliC (MacLennan, et al., 2010) (S. Typhimurium-OMP and S. 

Typhimurium-FliC were generated and kindly donated by Adam Cunningham laboratory 

[University of Birmingham]) and E. coli- LPS 0127:B8 (Sigma Aldrich, USA). Further 

description of these antigens is provided in Table 2-A below. Plates were washed with 
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wash buffer (PBS plus 0.05% Tween 20) and blocked with 200µl/well blocking buffer 

(PBS plus 1% BSA) for 1 hour at 37°C. Test serum at 1:20 in dilution buffer (PBS plus 

0.05% Tween 20 plus 1% BSA) was serially diluted 3-fold and incubated at 37°C in 

aerobic incubator for 1 hour. After washing, 100µl of 1:2000 secondary Goat Anti-human 

IgG-AP antibodies (Southern Biotech, USA) were added and incubated for 1 hour at 

37°C in aerobic incubator. Finally, after washing, 100µl of SIGMAFAST
™

 p-Nitrophenyl 

phosphate substrate (Sigma Aldrich, USA)  was added to each plate and the plate was 

read after 30 minutes, using a Bio Tek
TM

 reader ELx800 (Bio Tek Instruments, USA) at 

405nm. Specific antibodies were determined using arbitrary measurements (Figure 2.4). 

 

0

0.5

1

1.5

2

2.5

3

0.00010.0010.010.11

O
D

Dilution

Control 1

Sample 1

sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Sample 7

Control 2

Sample 8

Sample 9

Sample 10

Sample 11

Sample 12

Sample 13

Sample 14

 

Figure 2. 4: Quantifying anti-S. Typhimurium O; 4,5 LPS IgG antibody in serum 

Antibody titres targeting S. Typhimurium LPS in serum were determined by arbitrary 

measurements; 1 (cut off absorbance) was divided by the dilution factor for each sample.   
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Table 2- A: S. Typhimurium antigens used in antibody ELISA experiments  

S. Typhimurium antigens  Description of antigens 

1. S. Typhimurim LPS 
Commercial S. Typhimurium 0;4,5 antigen 

(ALEXIS Biochemicals) 

2. S. Typhimurim OMP 
Crude outer membrane protein generated from S. 

Typhimurium 

3. S. Typhimurim FliC 
FliC filament protein of flagellin generated from 

S. Typhimurium 

4. E. coli-LPS 127:B8 
Commercial E. coli-LPS 127:B8 (Sigma Aldrich, 

USA) was used as control 

 

 

 

 

 

 

 

 

 

 



Participants, Materials and Methods 
 

73 
 

2.2  SALMONELLA EXPOSURE AND DEVELOPMENT OF SPECIFIC 

IMMUNITY IN MALAWIAN CHILDREN 

2.2.1 Study design and participants  

A prospective longitudinal cohort study was conducted among healthy children and their 

mothers to determine the relationship between Salmonella exposure within the 

gastrointestinal tract (GIT) or oropharynx and development of serum immunity to 

Salmonella. Mothers were recruited to determine whether maternal breast milk 

bactericidal activity is associated with prevention of Salmonella colonization of the GIT 

among breastfed children (Figure 2.5). Children were recruited from 6 months of age and 

not from birth because there was limited time to recruits and follow study participants for 

a period longer than 18 months. However, Chapter 3 describes that at 6 months children 

exhibit poor SBA to Salmonella as passively acquired maternal antibodies decline in 

blood circulation hence limiting this immunity as the confounder at baseline (study 

entry).   
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Figure 2. 5: Study design; Salmonella exposure and development of immunity 

 

A total of 60 healthy children and their mothers were recruited when children were aged 

6 months and followed up to until when they were 18 months old. Study participants 

were followed at monthly intervals (children) and six-month intervals (mother) for study 

specific procedures as in indicated. Stool, serum and oropharynx swab were collected 

from each children while serum and breast milk were collected from mothers during 

follow-up (Figure 2.5). All samples collected and processed as described in laboratory 

methods section 2.2.8. 

 

Following the study approval by COMREC (see below), the study team (including 

myself as the study investigator, research nurse and the MLW science communication 



Participants, Materials and Methods 
 

75 
 

team) conducted the study specific sensitization meetings with ZHC healthy workers 

(Clinicians, Nurses and Healthy Surveillance Assistants) and Zingwangwa community 

leaders (village headmen and religious leaders). These sensitization meetings aimed at 

bringing awareness of the research study at ZHC and focussed on discussing information 

contained in the study information sheets. The recruitment process was conducted by the 

study research nurse. Study recruitment began with group sensitisation talk that was 

given to the parents and guardians attending ZHC. Children’s mothers who were keen to 

participate in the study were sensitised individually and their child recruited into the 

study provided they consented. Study participants were recruited consecutively provided 

they were meeting entry criteria including the specific age group (section 2.2.3). Study 

specific samples were collected by the research study nurse and transported to the 

laboratory for microbiological and immunological investigation (section 2.2.8). 

 

2.2.2 Sample size 

When this study was being conducted, the incidence of Salmonella exposure in healthy 

children for our study population was not known. However, a study with a similar design 

in Mexico showed that 40% of children were colonized or had minimally symptomatic 

infection with Salmonella during the first year of life (Cravioto, et al., 1990). A ratio of 

1.5 (60% unexposed/40% exposed) was assumed, percentage of unexposed with outcome 

10% (serum bactericidal activity) and percentage of exposed with outcome 50%. To 

detect 40% difference in serum bactericidal activity between Salmonella exposed and 

unexposed among children aged between 6 and 18 months with 80% power at the 0.05 
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significance level and allowing for 20% loss to follow up, a total  60 children aged 6 

months were recruited.   

 

2.2.3 Inclusion and exclusion criteria  

Study participants were only recruited as pairs (child and mother). Healthy children 

attending Zingwangwa Health Centre (ZHC) vaccination clinic aged 6 months were 

recruited. Mothers to these children were also recruited provided they were medically 

well. Children exclusion criteria included: children born preterm (before 38 weeks), 

known HIV-positive (documented in child health passport) or clinical HIV/AIDS and 

those that tested positive using rapid HIV tests (aged < 18 months were referred to early 

infant diagnosis (EID) clinic for HIV-DNA confirmatory test). HIV infected mothers and 

HIV exposed children were also excluded from the study. Children presenting with acute 

illness including fever >38°C, and residence outside the geographical wards that are 

situated within 5 km from ZHC were also excluded from the study.   

 

2.2.4 Study location 

Participants were recruited into the study at ZHC (under-five clinic) in Blantyre district. 

ZHC provide primary health care within the Blantyre city. According to Blantyre district 

health office (DHO) and QECH 2010/2011 annual report, it was projected that ZHC to 

have catchment population (those receiving service from the health facility) of about 147, 

676 in the year 2012 (MCI, 2013). Study specific samples were collected at ZHC and 
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transported to MLW for microbiological and immunological investigations as described 

in laboratory methods section 2.2.8. 

 

2.2.5 Tracing and mapping of study participants homes (Follow up)  

During the first study specific visit, the research study nurse or study field worker 

obtained sketch maps and contact details from each study participant mother to locate 

their home. Study field worker, used these sketch maps and contact details to visit each 

study participant home and obtain exact location GPS co-ordinates. This information was 

used to trace study participants in case of missing their scheduled visit, and the GPS co-

ordinates were used to investigate Salmonella epidemiology (i.e. Salmonella transmission 

pattern). 

 

2.2.6 Study participants feeding practices and medical history  

At each study specific visit, a questionnaire was administered to mothers to explore child 

feeding practices. Mothers were also asked to provide medical history for their child. 

 

2.2.7 Ethical consideration  

The study was compliant with Good Clinical Practice (GCP) regulations and conducted 

in accordance with the 1996 ICH GCP guidelines and the 2000 Declaration of Helsinki. 
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Ethical approval (P.01/13/1327) was granted by COMREC. Informed consent was 

obtained from a parent or guardian of each participating child and mothers. 

 

2.2.8 Laboratory methods  

2.2.8.1 Collection of peripheral blood sample  

Blood samples were collected as described in section 2.1.7.1 at all scheduled visits 

(Figure 2.6). 

 

2.2.8.2  Preparation and storage of serum  

Serum samples were prepared and stored as described in section 2.1.7.5. 

 

2.2.8.3 Serum Bactericidal Assay for quantification of S. Typhimurium specific 

antibody mediated immunity 

Quantification of serum bactericidal activity (SBA) were performed as described in 

section 2.1.7.10 
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2.2.8.4 Collection of breast milk and storage  

Breast milk from mothers was collected to investigate whether breast milk kills S. 

Typhimurium ex vivo and speculate whether breast feeding prevents colonisation of 

Salmonella in the GIT of breast fed babies. To ensure that breast milk was properly 

collected by study participating mothers. At the clinic mothers were asked to wash their 

hands with soap and running water before expressing milk. Mothers were asked to sit 

somewhere comfortable, relax, have their baby close by and if necessary warm their 

breasts to express milk. Breast milk was self-expressed by mothers. A total of 5ml breast 

milk was collected in a sterile universal container, and transported to the laboratory 

within 4 hours of collection. At the laboratory, milk samples were stored at 4º C until 

processing on the same day of collection. Milk was centrifuged at 400g for 20 minutes 

and the fatty layer was discarded. Breast milk fluid (supernatant) was aspirated and 

aliquoted in 2ml volumes and stored at -70º C until when required for testing (Shapiro, et 

al., 2007). 

 

2.2.8.5 Breast milk bactericidal assay for quantification of antibody immunity  

A milk bactericidal assay was developed by optimizing the previously described SBA 

(MacLennan, et al., 2008). S. Typhimurium strain D23580 was adjusted to 1.0x10
6 

cfu/ml 

and incubated at 37°C for 180 minutes with 3 test samples: milk which was non-heated, 

milk which had been heated at 72°C for 30 minutes (preliminary experiments showed 



Participants, Materials and Methods 
 

80 
 

that breast milk has factors that promoted Salmonella growth, therefore heated condition 

was considered as a baseline condition) and PBS (Table 2-B).  

 

Table 2- B : Experimental conditions used for evaluation milk bactericidal activity 

Experimental condition  Objective 

1. PBS plus Salmonella Confirm baseline concentration of Salmonella 

2. Milk plus Salmonella  Determine milk bactericidal activity 

3. Heated milk at 72°C plus 

Salmonella 
Inactivate complement and other bactericidal peptides 

 

Test samples were then serially diluted and plated in triplicate on Luria Bertani (LB) 

agar. A colony count of Salmonella was also done after 24 hours of incubation as 

described in 2.1.7.6. Log10 change in Salmonella cfu/ml from the baseline (heated at 

72°C for 30 minutes) was reported. 

 

2.2.8.6  Collection of stool specimens  

Mothers were provided in advance with stool collection containers (Sarstedt, Germany), 

and advised how to collect stool specimens from their children in sterile containers on the 

day they were due to attend study clinic. The spoon in the lid of the container was used to 

collect stool. Stool was collected up to a marked line on the tube and transported to the 

clinic within 8 hours of sample collection. 
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2.2.8.7 Stool processing storage and culture for selective Salmonella  

Stool specimens were stored in the refrigerator at 4ºC and processed for isolation of 

Salmonella on the same day. Stool specimens for DNA extraction were stored as whole 

stool for long term at -70
o
C. Matchstick head-size stool specimen was inoculated directly 

on selective media xylose lysine deoxycholate (XLD) agar plate (Oxoid, UK) and into 

10ml Selenite F broth (Oxoid, UK) and incubated aerobically at 37
o
C for 18-24 hours 

(Figure 2.6).  
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Figure 2. 6: Overview, isolation and identification of Salmonella from stool sample 

The process of isolation and identification of Salmonella from stool is shown. 

Representative images Salmonella colonies on differential culture media are shown. 

 

Selenite F Broth was used to enrich Salmonella from stool which may be in small 

numbers while reducing the growth of faecal coliform, particularly E. coli (Leifson, 1939, 

Wain & Hosoglu, 2008). The mechanism of how selenite F broth inhibit faecal coliforms 
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is not clear but  selenium toxicity has been implicated that it reacts with sulphur and 

sulphydral groups in critical bacteria cell components (Weiss, 1965). The inoculated 

Selenite F broth was sub-cultured onto an XLD agar plate, and incubated aerobically at 

37
o
C for 18-24 hours, and 1ml of inoculated Selenite F broth was transferred into 2ml 

micro tube (Eppendorf, Hamburg, Germany) and this was stored at -70
o
C for Salmonella 

detection using real time PCR (rt-PCR). Presumptive Salmonella colonies on XLD agar 

(selective and differential media allows preferential growth of  Salmonella and Shigella) 

appear  pink, with or without a black centre (Park, et al., 2012). However other enteric 

bacteria including Citrobacter, Proteus  and Serretia  also grow on XLD and these may 

resemble Salmonella as they also appear pinkish and exhibit black centre due to hydrogen 

sulphide (H2S) production (Park, et al., 2012). Presumptive Salmonella colonies were 

then sub-cultured onto sheep blood agar (SBA) and MacConkey (MAC) agar plates (both 

Oxoid, UK) (spreading both plates for single colonies) and incubated aerobically at 37
o
C 

for 18-24 hours. Suspected Salmonella colonies on MAC agar plate are non-lactose 

fermenters (NLF), and these appear colourless. Proteus species swarm on SBA agar plate 

and is distinguished from Salmonella and other enteric bacteria such as Citrobacter and 

Serretia that do not swarm on SBA. Presumptive Salmonella were then distinguished 

from other enteric bacteria (i.e Citrobacter and Serretia) using biochemical tests 

including triple sugar iron (TSI) agar (Oxoid, UK) and Urea agar (Oxoid, UK). TSI agar 

is used for the determination of carbohydrate fermentation and hydrogen sulphide (H2S) 

production in the identification of Gram-negative bacilli (Hajna, 1945). Salmonella are 

urea negative and TSI acid but with or without gas, and alkaline slope with or without 
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H2S production (Yong, et al., 1985). Further Salmonella identification was determined 

using API® 10S (bio Merieux, France) according to the manufacturer’s instructions. 

Salmonella serovar identification was then determined using standard serological 

grouping (Kauffman-White scheme). This allows identification of Salmonella serovars 

using antisera reactions according to their antigenic properties O (somatic antigen), H 

(flagellin antigen) and Vi (capsular polysaccharide antigen). Salmonella isolates with 

incomplete serological identification (Table 2-C) were archived for molecular 

identification and characterization. All Salmonella isolates were stored at -70 
o
C in 

microbank™ (Pro-lab Diagnostic, UK).  

 

Table 2- C: Salmonella serological tests 

 S. Enteritidis S. Typhimurium S. Typhi 
Salmonella 

species 

PSO + + + + 

PSH + + + + 

O9 antigen + - + - 

O4 antigen - + - - 

Vi antigen - - + - 

HG,m 

antigen 
+ - - - 

Hi antigen - + - - 

Hd antigen - - + - 

H1,2 

antigen 
- + - - 

O5 Antigen  - + - - 
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2.2.8.8 Development of real time PCR for Salmonella detection in stool specimen 

and other fluids  

To determine the pattern of Salmonella exposure within the GIT and the oropharynx both 

stool and oropharyngeal swabs were collected from each child at 1 month intervals. 

Currently, stool culture remain gold standard test for the detection of Salmonella within 

the GIT (WHO, 2003). However, stool culture is less sensitive (< 50%) (Hoffman, et al., 

1984, Matheson, et al., 2010) and time consuming (take no less than 3 days)(Wain, et al., 

2001). This study therefore also aimed to develop real-time PCR (rt-PCR) for Salmonella 

detection in faecal specimens. In Malawi and elsewhere in SSA the commonly isolated 

Salmonella serovars in blood include S. Typhimurium, S. Enteriditis and S. Typhi. To 

begin with, this study aimed at detecting the frequency of S. Typhimurium and S. Typhi 

using rt-PCR, therefore DNA primers sequences for the following genes: invaA 

(targeting all Salmonella serovars), FliC (targeting S. Typhimurim), LPXO (targeting S. 

Typhimurium ST313 strain) and fimbriae (targeting S. Typhi) were generated.   

 

DNA primers were generated using NCBI tool Primer Blast. Table 2-D describes design 

properties of DNA primers generated. Specificity of primers was checked using a 

BLAST search and primer secondary structures with the potential to hinder annealing 

were identified using mfold software version 3.6 (Washington University). Furthermore, 

melting temperature matches and checking for any hairpins was performed using the 

online tool (www.basic.northwestern.edu). Table 2-E and 2-F provides the list of DNA 

primers and probes generated.  
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Table 2- D: Primer design properties 

1. Product size ranging from 80-150bp. 

2. Having a GG, CC, GC or CG (‘G/C-clamp’) at the 3’end is preferable: 2 Gs or Cs 

in the last 5 bases, 1 G or C in the last 3 bases, and an A or T at the 3’end. 

3. Melting temperature 55-60°C, only 1-2°Cs difference between forward and 

reverse primers. 

4. GC content of 50-60%. 

5. Runs of same bases were avoided, especially stretches of >3 Gs or Cs at 3’ end. 

These results in polymerase slippage. 

6. Self-complementarity at 3’ end was avoided. 

7. Any 3’dimer formed by primer annealing to itself or partner must be non-existent 

or very weak (deltaG should be > -2 kcal). Any primer with both terminal delta 

G> -2 and an extendable 3’end (5’overlap) should be avoided. The strongest 

overall dimer should be unstable as well, delta G> -6. 
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Table 2- E: List of primers   

Primer name           Primer 

direction  

 

   Primer code 

Flic-STm 1                 Forward TGCTGATTTGACAGAGGCTAAA 

 

Flic-STm 1                 Reverse  

 

TCGCCTACCTTAACTGCTAAAC 

 

Flic-STm 2                 Forward 

 

GGGAACTGGTAAAGATGGCTATTA 

 

Flic-STm 2                 Reverse 

 

TTCACATCCTCAGTTGCTGTC 

 

LPXO-ST313 1          Forward 

 

TAGTCGAAGATGACGGCTTTG 

 

LPXO-ST313 1          Reverse 

 

CGGTTCAGTACGTTACCATCTT 

 

LPXO-ST313 2          Forward 

 

ACCTCCTATTTCCAGCGAGA 

 

LPXO-ST313 2          Reverse 

 

CTCGCCGTGGAATGGTTT 

 

INVA 1                      Forward 

 

AGCGTACTGGAAAGGGAAAG 

 

INVA 1                      Reverse 

 

CACCGAAATACCGCCAATAAAG 

 

INVA 2                      Forward 

 

TCATCGCACCGTCAAARGA 

 

INVA 2                      Reserve 

 

CGATTTGAARGCCGGTATTATT 

 

Fimbriae-ST  1           Forward 

 

CCGACCAAGTTCCAGATCAA 

 

Fimbriae-ST  1           Reverse 

 

GTTGGTTAGTAGCGAGGTGTT 

 

Fimbriae-ST 2            Forward  

 

CGCGAAGTCAGAGTCGACATAG 

 

Fimbriae-ST 2            Reverse AAGACCTCAACGCCGATCAC 
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Table 2- F: List of probes 

Probe name                                                               Probe description 

Flic-STm 1 

 

Fam-TGTTACCGGCACAGCATCTGTTGT-BHQ1 

 

Flic-STm 2 

 

Fam-CCAGCAAGAGTCACCTCACCGTTC-BHQ1 

 

LPXO-ST313 1 

 

Vic-AGCTATGGCGCTGTCGATCAACTT-BHQ1 

 

LPXO-ST313 2 

 

Vic-ACTGCCGTCGCTAAGAAACTGCTT-BHQ1 

 

INVA-1 

 

Fam-TTACGGTTCCTTTGACGGTGCGAT-BHQ1 

 

INVA-2 

 

Fam-ACGCTTCGCCGTTCRCGYGC-BHQ1 

 

Fimbriae-ST 1 

 

Vic-TGGCCAGTAATAATGTCGGGACGA-BHQ1 

 

Fimbriae ST 2 

 

Vic-CATTTGTTCTGGAGCAGGCTGACGG-BHQ1 

 

 

2.2.8.9 Extraction of DNA from stool for PCR testing and sequencing 

To extract DNA for detection of Salmonella and other enteric bacteria in stool using real 

time PCR and sequencing of gut microbial communities, DNA extraction methods that 

allow optimum detection of both Gram positive and Gram negative bacteria were 

adopted.  Approximately 200mg of stool was suspended in 500µl of PBS. Freshly 

prepared, 50ul lysozyme (10mg/ml) (Sigma Aldrich, USA) was added to each sample and 

incubated aerobically at 37 °C for 1 hour. Approximately 300 mg of 0.1mm diameter 

silicon beads (Biospec products, USA) were added to samples to disrupt bacteria at 

2100rpm for 1 minute.  Both the bead beating step and addition of lysozyme steps were 

aimed at enhancing the extraction of DNA from Gram positive and Gram negative 

bacteria. 1.2 ml lysis buffer ASL (Qiagen, Netherlands) was added to each sample and 
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thoroughly homogenized by vortexing. Samples were heated for 5 minutes at 70°C, 

vortexed for 15 seconds and centrifuged at 16,000rpm for 1 min to pellet stool particles. 

An InhibitEX
 
tablet (Qiagen, Netherlands) was added to 1.2 ml supernatant to remove 

PCR inhibitors from DNA extraction preparations, vortexed continuously for 1 minute 

then incubated for 1 minute at room temperature. Samples were centrifuged twice at 

16,000rpm for 3 minutes to pellet inhibitors bound to InhibitEX matrix. 15µl QIAGEN 

Proteinase K (Qiagen, Netherlands), 200μl supernatant and 200μl Buffer AL (Qiagen, 

Netherlands) were mixed and incubated at 70°C for 10 minutes. 200μl of ethanol (96–

100%) was added to the lysate and the mixture was transferred into QIAamp spin column 

(Qiagen, Netherlands)  placed in a 2 ml collection tube and centrifuged at 16,000rpm for 

1 minute. QIAamp spin column was placed on new 2ml collection tube, and tube 

containing the filtrate was discarded. 500μl Buffer AW1 (Qiagen, Netherlands) was 

added to the QIAamp spin column and centrifuged at 16,000rpm for 1 minute. 500μl 

Buffer AW2 (Qiagen, Netherlands) added to QIAamp spin column and centrifuged twice 

at 16,000rpm for 3 minutes. 200μl Buffer AE (Qiagen, Netherlands) was added directly 

onto the QIAamp membrane incubated for 1 minute at room temperature, then samples 

were centrifuged at 16,000rpm for 1 minute to elute DNA. Eluted DNA was stored at –

20°C. 

 

2.1.1.1  Real time PCR for detection of  Salmonella in stool specimens 

Previously optimised PCR protocol at MLW molecular laboratory was adopted. Master-

mix for rt-PCR was prepared using pre-defined quantities. A total of 20µl master-mix 
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was comprised of the following:12.5µl Platinum® Quantitative PCR Super Mix-UDG 

(Life Technologies, USA), 0.10µl specific forward primer, 0.10 specific reverse primer, 

0.10 specific probe (all primers and probes at 200nM), 0.05µl ROX reference dye (Life 

Technologies, USA) at 50nM final concentration, and 7.15µl nuclease-free water. This 

mixture was transferred to appropriate 96-well plate PCR wells. Five µl of test DNA, 

controls DNA, negative control (UV treated water) were added to appropriate well (with 

master-mix). Rt-PCR was run using Applied Biosystems® 7500 Real-Time PCR Systems 

(Life Technologies, USA) under appropriate reporter dye settings. The threshold was set 

in the lag phase, controls were checked for correctness, and then test samples CT values 

were registered (Figure 2.7).   

 

 

Figure 2. 7: Representative real time PCR read out 
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2.2.8.10 Limit of detecting  of Salmonella using  real time PCR 

The level of yielding positive Salmonella result using stool culture is low (< 50% true 

positive stool samples are detected) (Hoffman, et al., 1984, Matheson, et al., 2010). To 

determine a method that would yield superior limit of detecting Salmonella in stool 

samples, a number of methods were compared; standard stool culture method (selenite 

broth and XLD) with rt-PCR on spiked stool and rt-PCR on spiked stool (PCR method 3) 

and treated with selenite broth (PCR method 4) (Figure 2.8). Salmonella was adjusted to 

10
4 

– 10
1 

cfu/ml using Miles and Misra technique and DNA extracted using method 3 or 

method 4 (Figure 2.8). DNA extraction was performed as described section 2.2.8.9, but 

without treatment with lysozyme and bead beating step.  
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MILES MISRA: Bacteria at 104 – 10-1 cfu/ml

Sub-culture 

10µl Selenite

Spike 

(Loose stool)

(1) DIRECT

(PBS) 

DNA EXTRACTION (0.5ml)

(2) INDIRECT 

Spike 

(Loose stool)

Sub-culture 

10µl Selenite

(3) INDIRECT

MINUS SELENITE 

(4) INDIRECT 

PLUS  SELENITE

rt-PCR

STEP  ONE

STEP  TWO

STEP  THREE

STEP  FOUR
 

Figure 2.8: Methods of detecting Salmonella in stool using PCR 

 

Limit of detecting (LOD) S. Typhimurium in stool using the standard stool culture ranged 

between 10
3  

and 10
4
cfu/ml, while LOD S. Typhimurium in stool ranged between 10

1
 and  

10
3
 cfu/ml using PCR method 3 (Figure 2.9A). Observations were made that addition of 

Selenite F broth (PCR method 4) improved the LOD Salmonella in stool using rt-PCR 

(from LOD ranging 10
1
-10

3
 cfu/ml, [CT 30-35] using PCR method 3 to LOD ranging 

<10
1
-10

1
 cfu/ml, [CT <25] using PCR method 4) (Figure 2.9B). 
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Figure 2. 9: Development of real time PCR for detection of Salmonella exposure in 

stool 
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Representative diagram showing direct rt-PCR results (Figure 2.9A) and indirect (selenite 

enriched) rt-PCR results (Figure 2.9B). DNA was prepared at varying concentration as 

indicated. 

 

2.2.8.11 Specificity and sensitivity of PCR for Salmonella  

Stool samples harbours a huge amount of closely related (genetically) enteric 

bacteria(Fanaro, et al., 2003). These possess a challenge as regards to generation of 

highly specific and sensitive primers for rt-PCR assay. Newly generated DNA primers 

specificity was tested against a panel of Gram negative including Proteus, E. coli, 

Citrobacter and Klebssiella and Gram positives including Staphylococus aureus and 

Streptococcus pneumoniae. Both InvaA DNA primer and LPXO DNA primer were not 

specific for Salmonella (Proteus and E. coli DNA tested positive) (Table 2-E and 2-F). 

FliC and Fimbriae DNA primers were therefore considered for use in successive 

experiments. It’s possible that these DNA primers could be specific against enteric 

bacteria but fail to distinguish DNA from Salmonella serovars. Intra-Salmonella 

specificity and sensitivity of the DNA primers were investigated. Fimbriae DNA primer 

sensitivity was 100%, 95% CI (19.2-100) and specificity was 100%, 95% CI (75.1-100) 

(Table 2-G). FliC-1 DNA primer sensitivity was 100%, 95% CI (58.3-100), while its 

specificity was 37.5%, 95% CI (8.7-75.3) (Table 2-G). FliC-2 DNA primer sensitivity 

was 83%, 95% CI (36 -97.2) and sensitivity 100%, 95% CI (58.9-100) (Table 2-H and I).  

Taken together sensitivity and specificity for fimbriae DNA primer was excellent while 

specificity and sensitivity were poor for FliC-1 DNA primer and moderately good for 
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FliC-2 DNA primer. Fimbriae DNA primer was used for detection of S. Typhi in stool 

specimens. FliC-1 and FliC-2 DNA primers were used for screening and confirmation of 

S. Typhimurium detection in stool specimens.  

 

 

Table 2- G: Specificity and sensitivity for Fimbriae DNA primer (S. Typhi) 

 

 

 

 

Present 

 

 

n 

 

 

Absent 

 

 

n 

 

 

Total 

 

Positive 

 

TP 

 

2 

 

FP 

 

0 

 

2 

 

Negative 

 

FN 

 

0 

 

TN 

 

13 

 

13 

 

Total 
 

 

2 
 

 

13 

 

15 

 

Sensitivity= 100%, 95% CI (19.2-100) 

 

Specificity =  100%, 95% CI (75-100) 

TP refers to true positive 

FN refers to false negative 

FP refers to false positive 

TN refers to true negative 
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Table 2- H: Specificity and sensitivity for FliC-1 DNA primer (S. Typhimurium) 

 

 

 

 

Present 

 

 

n 

 

 

Absent 

 

 

n 

 

 

Total 

 

Positive 

 

TP 

 

7 

 

FP 

 

5 

 

12 

 

Negative 

 

FN 

 

0 

 

TN 

 

3 

 

3 

 

Total 
 

 

7 
 

 

8 

 

15 

 

Sensitivity= 100%, 95% CI (58-100) 

 

Specificity =  37.5%, 95% CI (8.7-75.3) 

TP refers to true positive 

FN refers to false negative 

FP refers to false positive 

TN refers to true negative 

 

Table 2- I: Specificity and sensitivity for FliC-2 DNA primer (S. Typhimurium) 

 

 

 

 

Present 

 

 

n 

 

 

Absent 

 

 

n 

 

 

Total 

 

Positive 

 

TP 

 

5 

 

FP 

 

0 

 

5 

 

Negative 

 

FN 

 

1 

 

TN 

 

7 

 

8 

 

Total 
 

 

6 
 

 

7 

 

13 

 

Sensitivity= 83.3%, 95% CI (36-97.2) 

 

Specificity =  100%, 95% CI (58.9-100) 

TP refers to true positive 

FN refers to false negative 

FP refers to false positive 

TN refers to true negative 
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2.3   DEVELOPMENT OF T CELL AND ANTIBODY MEDIATED IMMUNITY 

IN RESPONSE TO INVASIVE SALMONELLA INFECTION 

 

2.3.1 Study design and participants  

A prospective longitudinal cohort study was conducted comprising of children presenting 

to hospital with invasive Salmonella (index cases). To evaluate T cells and antibodies 

immune response, index cases were recruited when S. Typhimurium or S.Typhi was 

isolated in blood cultures as part of routine surveillance at Queen Elizabeth Central 

Hospital (section 2.1.5). Family members of index cases were also recruited to evaluate T 

cells and antibodies immune response and further explore Salmonella immune-

epidemiology. Blood samples were collected from study participants for immunological 

investigations (Figure 2.10). 
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Figure 2. 10: Salmonella bacteraemia and development of cellular and immunity 

A total of 20 children with Salmonella bacteraemia and their family members were 

recruited. Only index cases were prospectively followed at 1 month into the recovery 

period. A blood sample was collected from study participant as indicated (Figure 2.10). 

All blood samples were processed as described in section 2.3.6. 

 

2.3.2 Sample size  

A total of 20 children (less than 15 years of age) were recruited presenting to hospital 

with Salmonella bacteraemia and their family members. This was a pilot study and power 

calculations were not undertaken. 
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2.3.3 Inclusion and exclusion criteria  

Children recruited were only those that had microbiologically confirmed Salmonella 

bacteraemia, among febrile paediatric admissions to Queen Elizabeth Central Hospital 

(QECH) and who were domiciled in Blantyre district. Family members of these children 

were also recruited. Children with conditions that could potentially interfere with the 

evaluation of the study objectives were excluded such as terminally illness and upper GI 

surgery. Children with HIV infection and severe malnutrition were not included. 

 

2.3.4 Study location  

Children and family members participating in the study were recruited and blood samples 

collected at QECH (paediatrics and child health ward and outpatient department). QECH 

has been described in section 2.1.5. Blood samples were transported to MLW for 

immunological investigations within 4 hours of collection. 

 

2.3.5 Ethical consideration  

The study was compliant with Good Clinical Practice (GCP) regulations and conducted 

in accordance with the 1996 ICH GCP guidelines and the 2000 Declaration of Helsinki. 

Ethical approval (P.02/11/1040 and P.08/12/1265) was granted by COMREC. Informed 

consent was obtained from a parent or guardian of each participating child and adult 

family members. 
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2.3.6 Laboratory methods  

2.3.6.1 Collection of peripheral blood sample  

Blood samples were collected as described in section 2.1.7.1 at all study specific 

scheduled visits (Figure 2.10). 

 

2.3.6.2 Preparation and storage of serum  

Serum samples were prepared and stored as described in section 2.1.7.5 

 

2.3.6.3 Intracellular cytokine staining for detection of CD4+ IFN-γ+ T  cells  

Whole blood (WB) for intra-cellular cytokine staining (ICS) assay was collected in 1ml 

BD vacutainer® sodium heparin and the assay was performed as described in section 

2.1.7.8 with minor modifications. Briefly 450μl blood was stimulated with (Salmonella 

enterica Generalized Modules for Membrane Antigens expressing O antigen), GMMA- 

(Salmonella enterica Generalized Modules for Membrane Antigens not expressing O 

antigen), FliC (S. Typhimurium flagellin protein) and OMP (S. Typhimurium outer 

membrane protein) [all adjusted to 10µg/ml] were all generated and kindly donated by 

Calman MacLennan laboratory (Novartis Vaccine Institute for Global Health) and all 

samples were co-stimulated with anti-CD28/49d antibody (Becton Dickinson, USA) for 6 

hours at 37
º
C. At 2 hours, intra-cellular cytokine release was inhibited with 1µl of BD 

GolgiStop™ (Becton Dickinson, USA) at 10
6 

cells/mL. Cells from 200μl of blood 

sample were lysed with 2ml of 1X FACs lysing solution then permeabilised with 500μl 
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of 1X permeabilising solution (Becton Dickinson, USA). Cells were washed with 

PBS/0.5% BSA buffer (Sigma Aldrich, USA), and stained with 3μl each of the surface 

antibodies: CD3-PercP, CD4-APC and 5μl of the intra-cellular cytokine antibody: IFN-γ-

PE (all Becton Dickinson, USA). Cells were fixed and events acquired and analysed 

using FlowJo as described in section 2.1.7.8 (Figure 2.11). 

Un-stimulated GMMA O+ GMMA O-

OMP FliC

C
D

4
 P

er
C

P

IFN-γ PE

CD4+IFN-γ+

0.06%

CD4+IFN-γ+

0.10%

CD4+IFN-γ+

0.04%

CD4+IFN-γ+

0.30%
CD4+IFN-γ+

0.30%

INDEX

 

Figure 2. 11: Detection of T cells producing cytokines 

A representative figure of antigen-specific CD4+ T cells producing IFN-γ.  T cells 

were stimulated by various Salmonella antigens as indicated.  
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Representative plots of CD4+ T cells producing IFN-γ in unstimulated condition or 

stimulated with GMMA O+, GMMA O-, OMP, and FliC antigens. Index T cell responses 

at the point of diagnosis are shown (Figure 2.11). 

 

2.3.6.4 B-cell ELISPOT for detection of Salmonella specific ASC 

B cell immunity to specific pathogens including Salmonella are commonly evaluated 

using antigen specific ELISA in serum or plasma (Carlsson, et al., 1975, Beasley, et al., 

1981, Strid, et al., 2007). However, evaluation of B cell immunity using ELISA alone 

does not provide the whole picture of B cell immunity as this excludes the examination of 

memory B cells pool. It has therefore being argued that evaluation of B cell immunity by 

using both ELISA and B cell ELISpot give the complete picture of B cell immunity 

(Jahnmatz, et al., 2013). B cell ELISpot is used to detect antigen specific secreting cells 

(ASC) and memory B cells. Active plasma blast (ASC) stimulated in vivo by either 

natural infection or vaccination can be examined directly by B cell ELISpot without ex 

vivo stimulation as is the case with memory B cells which require ex vivo stimulation to 

reach detectable levels (Jahnmatz, et al., 2013). In this study IgG or IgA ASC were 

quantified by B cell ELISpot (without re-stimulation) as previously described (Kantele, et 

al., 2012) with minor modifications. Millipore multiscreen 96-well ELISpot plates (EMD 

Millipore, USA) with a 0.45µm surfactant free mixed with cellulose ester membrane 

were coated with Salmonella O:4,5-LPS (ALEXIS Biochemicals), Salmonella O:9-LPS 

(ALEXIS Biochemicals), GMMA+ (Salmonella enterica Generalized Modules for 

Membrane Antigens expressing O antigen), GMMA- (Salmonella enterica Generalized 
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Modules for Membrane Antigens not expressing O antigen), S. Tymphimurim -FliC (S. 

Typhimurium flagellin protein) and S. Tymphimurim -OMP (S. Typhimurium outer 

membrane protein) [all adjusted to 5µg/ml] diluted in carbonate-bicarbonate buffer 

(Sigma Aldrich, USA) pH 9.6 (filtered through a 0.2µm syringe filter). Plates layout is 

shown in Figure 2.12. Coated plates were incubated at 4°C overnight. On day 2, plates 

were washed 6 times with 200µl/well of PBS then soaked in 200µl/well of PBS for 5 

minutes. Plates were blocked with R10 medium (RPMI plus 10% Gibco® newborn calf 

serum (NBCS) [Life Technologies, USA]) (200µl/well) and incubated at 37°C in 5% 

CO2 for 1 hour. PBMCs were isolated from heparinized blood and processed within 4 

hours after collection. PBMC pellets were re-suspended in R10 medium and cells 

counted and adjusted to 2.5x10
6
cells/ml. A cell suspension of 100µl was added to the 

blocked ELISpot plate to achieve 2.5x10
5 

cells/well and incubated at 37°C in 5% CO2 for 

24 hours. Cells and supernatants were discarded and plates washed 5 times with PBS-

Tween then soaked for 5 minutes. Alkaline-phosphatase goat anti-Human IgG and IgA 

antibodies were diluted 1:5000 in 0.2µm filtered PBS/10% NBBS and added 100µl/well 

to the appropriate wells and incubated at RT for 4 hours. Plates were washed five times 

with PBS-Tween, and four times with 200µl/well of distilled water. Alkaline phosphatase 

(AP) colour development buffer concentrate (Bio Rad, Switzerland) was diluted 1:25 

with distilled water. 1:100 5-Bromo-4-chloro-3-indolyl-phosphate solution/nitro blue 

tetrazolium (BCIP/NBT) were diluted with 1:25 colour development butter. 200µl of 

newly prepared alkaline phosphates solution (BCIP/NBT) was added to appropriate well 

and incubated until spots were developed. Further colour development was stopped with 
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distilled water (200µ/well) without allowing background to become too dark. Lastly 

plates were washed twice with 200µl/well distilled water. Plates were air dried and read 

using AID ELISpot Reader version 4.0 (AID GmbH, Germany) (Figure 2.13).  
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Figure 2. 12: IgG and IgA antibody secreting cells ELISPOT plate layout 

A representative plate lay out for detection of IgG and IgA ASC using ELISPOT 
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Figure 2. 13: IgG and IgA ASC per 2.5X10
5
cells/ml  

Representative images showing antigen-specific IgG antibody secreting cells (ASC) 

(Figure 2.13A) and IgA ASC (Figure 2.13B). Antigen-specific IgG and IgA ASC to 04-

LPS, 09-LPS, GMMA O+, GMMA O-, OMP and FliC for both index and family member 

are indicated (Figure 2.13A, B).  

 

 

 

 

 



Participants, Materials and Methods 
 

105 
 

2.4  Ty21a ORAL TYPHOID  VACCINE INDUCED IMMUNITY IN THE 

PERIPHERAL  BLOOD AND GUT MUCOSA OF HEALTHY ADULTS 

 

2.4.1 Study design and participants  

An interventional study was conducted to model natural Salmonella immunizing events 

in the gut mucosa and peripheral blood in healthy adults from the UK vaccinated with 

Ty21a Oral Typhoid vaccine. Participants were given three oral doses of the vaccine.  

One capsule was taken on each of days 0, 2 and 4, approximately one hour before a meal, 

with a cold or lukewarm drink, as recommended by the manufacturer and as licensed for 

use in the UK (Figure 2.14).  

 

2.4.2 Sample size  

This study aimed at recruiting 10 healthy adults in the vaccine group and 10 healthy 

adults in the control group in Liverpool. This was a pilot study and so power calculations 

were not done. 

 

2.4.3 Inclusion and exclusion criteria  

Healthy adults aged between 18 and 60 years, fluent in spoken English and those capable 

of giving informed consent were included in the study. Participants that were pregnant, 

had chronic illness or immune-compromised, anaemia, platelet count below 30,000 and 

those that had previous GI surgery were excluded. Individuals who had received the 
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parenteral typhoid vaccine within the past three years or the oral typhoid vaccine within 

the past twelve months, those who had previously travelled in countries endemic for 

typhoid (outside Europe, Australia or North America) and those with previous adverse 

reaction to vaccination were also excluded.  

 

Figure 2. 14: Ty21a oral typhoid vaccine induced immunity in the peripheral blood 

and gut mucosa 

A total of 9 vaccines and 8 controls (healthy adults age 18-65) were recruited in this 

intervention study to compare immune responses induced by oral Ty21 a Typhoid 

vaccine within the gastrointestinal tract (GIT) and peripheral blood. Three doses of oral 
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Ty21a vaccine were administered in the vaccine group only, and blood and gastroscopy 

specimens were collected as indicated (Figure 2.14).  

 

2.4.4 Study location  

This study was conducted in Liverpool and was sponsored by the Royal Liverpool 

University Hospital and the Liverpool School of Tropical Medicine (LSTM). The clinical 

work was carried out at the Royal Liverpool University Hospital and blood samples 

investigations were performed at LSTM. 

 

2.4.5 Ethical consideration  

Ethical approval for this study was obtained from the National Research Ethics Service 

(10/H1005/20). Informed consent was obtained from all study participants.  

 

2.4.6 Laboratory methods  

2.4.6.1 Collection of peripheral blood sample  

A total of 30ml venous blood in 5ml BD sodium heparin tube (totalling 20ml)  and 10ml 

BD serum tube (all Becton Dickinson, USA) was collected from both study groups on 

day 0 (pre-immunization sample), day 11 and day 18 follow up (Figure 2.15). Blood 

samples were collected by research study nurse.  

 



Participants, Materials and Methods 
 

108 
 

2.4.6.2 Isolation of peripheral blood mononuclear cells for ICS and IPT 

At total of 20ml of whole blood (WB) was collected in BD sodium heparin tubes (Becton 

Dickinson, USA) and was diluted with an equal volume of sterile PBS (Invitrogen, USA). 

Mixed blood/PBS was layered over half the volume of Lymphoprep
TM

 (Axis-Shield, 

Scotland) and centrifuged at 800g for 20 minutes, with the brakes off at room 

temperature (RT). PBMCs were aspirated using a sterile Pasteur pipette into a separate 

50ml BD Falcon™ Conical Centrifuge Tubes (Becton Dickinson, USA) and washed with 

40ml sterile PBS (Invitrogen, USA) at 500g for 10 minutes. Cell pellets were next 

washed with 10ml of complete medium (50ml FBS [Invitrogen, USA] and 10ml 200mM 

L-glutamine [Sigma Aldrich, USA] were added to a 500ml bottle of RPMI-1640 [Sigma 

Aldrich, USA]) at 500g for 5 minutes. Pelleted cells were suspended in 2ml of complete 

medium and counted using a Neubauer Haemocytometer (Hausser Scientific, USA). Over 

100 cells were counted if possible from 4 large squares to obtain a cell count per ml 

which was computed as follows: the product of cell count multiplied by 10
4
 and divided 

by the number of large squares. Each sample cell concentration was adjusted to 5x10
6
 per 

ml and used for immuno-phenotyping and intra-cellular cytokine staining as described in 

section 2.4.6.5 and 2.4.6.6. 

 

2.4.6.3 Collection of duodenum biopsy 

Duodenum biopsy collection was performed by a Consultant Gastroenterologist. D2-D3 

duodenal pinch biopsies were collected on day 18 from vaccinees and controls (Figure 

2.15). Study participants fasted at home for 8 hours from midnight prior to the 
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endoscopic procedure. Sedation was optional; study participants were given up to 5mg 

maximum of midazolam intravenously. Nasal oxygen was administered during the 

procedure, and pulse oximetry monitoring was conducted throughout the procedure.  

Between 12 and 15, D2-D3 duodenal single-bite cold biopsies at 20-25cm insertion were 

collected using Boston Scientific large capacity ‘jumbo’ forceps (Boston Scientific, 

USA) which passed through a standard 2.8mm endoscopic biopsy channel. Biopsies were 

placed in MR15 medium (Mixture of 50ml Fetal Bovine Serum [Sigma Aldrich, USA], 

10ml at 200mM L-glutamine [Sigma Aldrich, USA], 1ml Tazocin [piperacillin at 

250mg/ml, tazobactam at 31.25mg/ml] [Wyeth Pharmaceuticals, USA] and 2.5ml 

amphotericin B at 250µg/ml (Sigma Aldrich, USA) and 500ml RPMI-1640 [Sigma 

Aldrich, USA)]), and transported on ice to the laboratory for processing. Study 

participants were observed for two hours post-procedure, given a drink and snack before 

being discharged home.  
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Figure 2. 15: Gastroscopy of the duodenum 

 

2.4.6.4 Isolation of  gut mucosal mononuclear cells  

Gut mononuclear cells were isolated using a modification of the method previously 

described by Kaltsidis et al (Kaltsidis, et al., 2011). Biopsies were placed in 10ml MR15 

medium on ice and were transported to the laboratory within 1 hour of collection. 

Samples were centrifuged at 400g for 10 minutes at room temperature, with the brake 

disabled. Biopsy pellets were re-suspended in 12.5ml CII-S medium (50mg Collagenase 

II-S [Sigma Aldrich, USA] plus 100ml MR15) and incubated at a 45° angle in a 37˚C 

shaking incubator at 220 rpm for 30 minutes. The tissue suspension was transferred into 

an open 50ml BD Falcon™ Conical Centrifuge Tubes (Becton Dickinson, USA). The 

tissue suspension was introduced by force through the syringe attached to a 16-gauge 

blunt-ended needle (Miltenyi Biotec, Germany) and then plunged and aspirated 4-5 
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times. Large aggregates were removed by passing the suspension through a 70µm cell 

strainer (Becton Dickinson, USA). Tissue fragments and clumps left were transferred 

from the cell strainer into the original tube by rinsing the cell strainer with 12.5ml of CII-

S medium, ensuring that all remaining CII-S medium also entered the original tube. The 

original tube was placed back into the shaking incubator and the digestion and disruption 

procedure was repeated twice. Free cells from all three passages were pooled and 

centrifuged for 7 minutes at 500g. Pellets were re-suspended in 30ml MR15, and then 

centrifuged at 500g for 7 minutes. Pellets were re-suspended in 1ml MR15. Mononuclear 

cells were then adjusted to 1.0 x10
6
/ml and seeded in Greiner CELLSTAR® 24-well 

plates (Greiner bio one, USA) at 1.0x10
6
/ml and rested overnight by incubating the plate 

at 37°C, 5% CO2. Cells were harvested, re-counted and adjusted to 5.0x10
6
/ml. 

Mononuclear cells were then used for intracellular cytokine producing T cells, as 

described in section 2.4.6.6. 

 

2.4.6.5 Immuno-phenotyping for quantification of homing markers 

This study aimed at characterizing homing properties of T cell subsets. The β7 integrin 

forms heterodimers with both the α4 and αE integrins (Stefanich, et al., 2011). Since 

commercial anti-α4β7 antibody conjugated to a flourochrome of interest was not 

available, alternatively employed anti-β7 PE Cy7 antibody for T cell immunophenotying.  

PBMCs were isolated from whole blood (WB) as described in section 2.4.6.2 and 

adjusted to 5.0x10
6
/ml. Test tubes were labelled as: fluorochrome Minus One (FMO) and 
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test for T cell surface phenotyping. A cell suspension of 200µl at 1.0 x10
6
/ml was 

transferred to appropriate tubes, pelleted at 500g for 5 minutes and 100μl supernatant was 

removed. PBMCs were stained for T cell FMO condition with a pre-determined cocktail 

of surface staining antibodies: 5µl CD3-APC, CD4-APC H7, 2µl CD8-PE Cy7, 5µl 

CD19-PB (all Becton Dickinson, USA), and 5µl PBS (Invitrogen, USA). PBMCs were 

stained for the T cell test condition with a pre-determined cocktail of surface staining 

antibodies: 5µl CD3-APC, 5µl CD4-APC H7, 2µl CD8-PE Cy7, 2μl  Integrin β7-PE Cy5 

(all Becton Dickinson, USA), 2μl CCR9-PerCP Cy5.5 (BioLegend, USA), 3μl CD62L-

AF700 (BioLegend, USA), 10μl CD45RA-FITC (Beckon Dickinson, USA), 5μl CCR7-

PB  (BioLegend, USA), and 5µl PBS (Invitrogen, USA). Stained PBMCs were incubated 

at 4°C in the dark for 20 minutes. Stained PBMCs were washed with 1ml PBS 

(Invitrogen, USA), centrifuged at 500g for 5 minutes. PBMCs were fixed in 1:10 diluted 

300µl FIX solution (Becton Dickinson, USA) then acquired on BD FACSDIVA version 

8 (Becton Dickinson, USA) within 24 hours. Memory T cells were gated and analysed 

using Flow Jo
TM

 version 7.6.5 software (Tree star, USA). 

 

2.4.6.6 Intracellular cytokine staining for detection of  T cell producing cytokines   

PBMCs isolated from whole blood (WB) and MMCs isolated from gut mucosal tissue 

were adjusted to 5x10
6
/ml for antigen stimulation experiments. These antigen stimulation 

conditions were prepared: un-stimulated fluorochrome Minus One (US-FMO), un-

stimulated stained (USS), Ty21a, influenza, and Staphylococcal enterotoxin B (SEB). 

200µl PBMC or MMCs at 1.0 x10
6
/ml were transferred appropriate micro-well (Greiner 
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bio one, USA). PBMCs or MMCs were stimulated as follows: US-FMO (no antigen 

stimulation), USS (no antigen stimulation), heat-inactivated Ty21a at 0.0632µg/ml 

(Berna Biotech, Switzerland), influenza (Influenza virus vaccine) at 0.225µg/ml (Solvay 

Biologicals B.V., Netherlands) and SEB at 100µg/ml (Sigma Aldrich, USA). Stimulated 

PBMCs or MMCs were incubated at 37 °C for 2 hours and treated with 1µl of BD Golgi-

Plug (Becton Dickson, USA). Stimulated PBMCs or MMCs were incubated at 37˚C for a 

further 16 hours before harvesting. Non-adherent MMCs were removed by adding 200µl 

of RPMI-1640 medium and pipetting up and down. Harvested PBMCs or MMCs were 

pelleted at 500g for 5 minutes at 4˚C and the supernatant poured off. PBMCs or MMCs 

were re-suspended in 1ml PBS (Invitrogen, USA) containing 1µl ViViD (violet 

fluorescent reactive dye) (Invitrogen, USA) and incubated at 4˚C in the dark for 20 

minutes. PBMCs or MMCs were suspended in 1ml PBS (Invitrogen, USA) and 

centrifuged at 500g at 4°C for 5 minutes.  Supernatants were poured off and cells were 

stained with pre-determined cocktails of surface staining antibodies, as follows: Pre-

determined cocktail of T cell FMO antibodies: 5µl CD3-APC, 5µl CD4-APC H7, 2µl 

CD8-PE Cy7, and 5µl CD19-Pacific Blue (all Becton Dickinson, USA). Pre-determined 

cocktail of surface antibodies for T cells: 5µl CD3-APC, 5µl CD4-APC H7, 2µl CD8-PE 

Cy7, 5µl CD19-Pacific Blue, 2µl β7-PE Cy5 (all Becton Dickinson, USA), 2µl CCR9-

PerCP Cy5.5 (BioLegend, USA), and 5µl PBS (Invitrogen, USA). Stained cells were 

incubated at 4°C in the dark for 15 minutes and washed with 1ml PBS (Invitrogen, USA) 

for 5 minutes at 500g. Cells were treated with 250µl of Cytofix/Cytoperm (Becton 

Dickinson, USA), incubated at 4°C in the dark for 20 minutes. Cells were then washed 
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with 1ml Perm/Wash (Becton Dickinson, USA) centrifuged at 500g for 5 minutes. 

Permeabilised cells were stained with pre-determined cocktail of intracellular cytokine 

staining antibodies: 1µl IFNγ-AF700, 2.5µl TNFα-AF488, 10µl IL2-PE (all Becton 

Dickinson, USA), and 1.5µl Perm/Wash. These were incubated at 4°C in the dark for 30 

minutes and washed with 1ml Perm/Wash for 5 minutes at 500g. Finally were fixed in 

1:10 diluted 300µl FIX solution (Becton Dickinson, USA) then acquired on BD™ LSR 

II flow cytometer (Becton Dickinson, USA). CD3+CD4+ T cells producing IFN-γ, TNF-

α and IL-2 were analysed for polyfunctional CD4+ T cells producing single, double and 

triple cytokines were further analysed by Boolean gates using Flow Jo
TM

 version 7.6.5 

software (Tree star, USA).  
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CHAPTER 3: DEVELOPMENT OF ADAPTIVE IMMUNITY TO 

NONTYPHOIDAL SALMONELLA IN MALAWIAN CHILDREN 

Some of the work in this chapter has been published in the Journal of Infectious Diseases. 

The full manuscript is included in the appendix. 

 

3.1 INTRODUCTION 

NTS bacteraemia remains an important health problem in sub Saharan Africa particularly 

in young children and HIV infected individuals (Reddy, et al., 2010, Feasey, et al., 2012). 

To effectively control NTS bacteraemia in humans, public health interventions, such as 

vaccination alongside improvements in sanitation and hygiene in endemic regions, are 

required. Well characterized immune components that constitute immunity to NTS will 

help to inform the design of an effective vaccine for Salmonella. Immunity to Salmonella 

has been extensively studied in animal models compared to humans. For instance, mouse 

models of invasive Salmonella disease implicate innate immune cells (phagocytes), T cell  

and antibody-mediated immunity (Mastroeni, et al., 1993, Tam, et al., 2008).  It is known 

that immunity to pathogens in mouse models is not always replicated in humans. 

Therefore, it is important to understand the similarities and differences between the 

immune response to Salmonella in animals and humans.   

As discussed in chapter 1 (introduction chapter), NTS bacteraemia is particularly 

common among African children under two years of age suggesting that immaturity of 

the immune response may contribute towards susceptibility to invasive Salmonella 
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infection in this group. Immunity to Salmonella is complex and involves both humoral 

and cell-mediated mechanisms (Mastroeni, 2002, Mastroeni, 2003). Most Malawian 

children acquire anti-Salmonella IgG and IgM antibodies and bactericidal activity against 

NTS by the age of 2 years (MacLennan, et al., 2008). Antibodies targeting NTS can 

effect bacterial killing through activation of complement cascade and assembly of the 

membrane attack complex (MacLennan, et al., 2008). Antibodies opsonize NTS and, 

together with C3b deposition, facilitate internalization by phagocytes and subsequent 

killing of NTS through oxidative burst (Gondwe, et al., 2010). These immune processes 

are thought to be critical for preventing extracellular growth and dissemination of NTS 

(MacLennan, et al., 2008). However, salmonellae are facultative intracellular bacteria 

and individuals with primary immune-deficiencies affecting the IL12/23-IFN-γ axis (T 

helper 1 pathway) are particularly susceptible to NTS (Jouanguy, et al., 1999, 

MacLennan, et al., 2004), indicating an important role for cellular immune mechanisms 

and T cells, in particular, in immunity to Salmonella. This is supported by the close 

association between HIV/AIDS and NTS bacteraemia among adults in Africa, Europe 

and the USA (Gilks, et al., 1990, Gordon, et al., 2002), particularly those with CD4+ T 

cell counts of less than 200 cells/ul (Gordon, et al., 2002). Prior to commencing ART, 

recrudescence of NTS bacteraemia is a common finding in this group, again indicating an 

important role for T cell immunity in clearing NTS infection and preventing chronic 

intracellular infection (Gordon, et al., 2002). Adoptive transfer studies in mouse model of 

salmonellosis indicate that a combination of Salmonella-specific T cell and antibody is 

required for optimal protection against Salmonella infection (Mastroeni, et al., 1993, 
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McSorley & Jenkins, 2000). T cells are particularly necessary to clear Salmonella from 

mice and prevent the development of chronic carrier states that could lead to relapse of 

infection (Mastroeni, 2003). Athymic mice and CD28
-/-

 mice both show increased 

susceptibility to Salmonella infection suggesting that in the mouse model, clearance of 

Salmonella requires CD28-dependent activation of T cells (O'Brien & Metcalf, 1982, 

Mittrucker, et al., 1999). Mice studies indicate that the T helper cell response to 

Salmonella is broad and is directed to protein antigens such as flagellin, porins and pilin 

(Mastroeni, 2002). Although it is known that CD4+ T cells orchestrate macrophage 

effector functions through IFN-γ and TNFα (Janssen, et al., 2002, Gordon, et al., 2005) 

and HIV-infected individuals with low CD4 counts are particularly susceptible to NTS 

bacteraemia (Gordon, et al., 2010), the contribution of CD4+ T cell-mediated control of 

NTS in humans has not been well studied.  

Class-switched (IgG isotype) and non-switched (IgM isotype) Salmonella-specific 

antibody levels have been shown to increase with age in young African children 

(MacLennan, et al., 2008). The study hypothesis was that in the first two years of life, 

CD4+ T cell immunity  to S. Typhimurium develop in parallel with the development of S. 

Typhimurium antibody immunity. Eighty healthy Malawian children aged 0-60 months 

were recruited in a cross-sectional study. S. Typhimurium-specific CD4+ T cells 

producing IFN-γ, TNFα and IL2 were quantified using intra-cellular cytokine staining. 

Antibodies to S. Typhimurium were measured by serum bactericidal activity assay 

(SBA), and anti- S. Typhimurium IgG antibodies by ELISA.  
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Hypothesis: In the first two years of life, CD4+ T cell immune responses to S. 

Typhimurium develop in parallel with the development of anti-S. Typhimurium 

antibodies. 

 

Study objectives: 

a) Characterize how T cell and antibody immune responses to S. Typhimurium develop 

in the first five years of life.   

b) Examine the development of T cells and antibodies to S. Typhimurium in relation to 

S. Typhimurium bacteraemia epidemiology in children from Blantyre.  

 

3.2 PARTICIPANTS RECRUITMENT AND METHODS  

The methods for this chapter have been described in Chapter 2: study designs, materials, 

and methods, section 2.1. 

In brief, 80 healthy Malawian children aged 0 to 60 months attending vaccination clinic, 

health check clinics and newborns in the maternity ward at Ndirande Health Centre 

(NHC) were recruited. A total of 20 adult participants were also recruited. NHC provide 

primary health care within the Blantyre city. According to Blantyre district health office 

(DHO) and QECH 2010/2011 annual report, it was projected that NHC to have 

catchment population (those receiving service from the health facility) of about 221,217 

in the year 2012 (MCI, 2013). Child and adult participants were sampled blood at NHC. 

To characterise the acquisition of T cell immunity to NTS whole blood was quantified for 
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memory T cells and Salmonella specific-CD4+ T cells producing cytokines; IFN-γ, TNF-

α and IL-2 by immuno-phenotyping and intracellular cytokine staining respectively. To 

characterise the acquisition of antibody mediated immunity to NTS, serum was quantified 

for complement fixing antibody by serum bactericidal assay and ELISA. These T cell and 

antibody responses to NTS were then examined in relation to age distribution of S. 

Typhimurium bacteraemia in under-five children. 

 

3.3 STATISTICAL ANALYSES 

GraphPad Prism version 5.0 (GraphPad Software, Inc, USA) was used to generate graphs 

and analyse the data. End-point response variables (antigen specific T cells producing 

cytokines, serum bactericidal activity and antibody titres) were examined for normality of 

distribution. The median was used as the measure of central tendency for non-normal 

distributed end points. Phases of the immune response were distinguished so as to further 

understand the evolution of immunity. Nonlinear regression models were used to fit to 

data relating S. Typhimurium-specific T cells and SBA responses with age. The inflection 

points of the resultant curves were taken to represent the boundaries of qualitatively 

different phases of immune response. The first period before the boundary was termed 

the early response and the subsequent period was termed the late response. The immune 

responses within these early and late periods were then modelled by linear regression. P-

value of <0.05 was considered significant. 



Development of adaptive immunity in children  
 

120 
 

3.4 RESULTS 

3.4.1 Healthy study participants 

A total of 80 healthy children (Table 3-A), in 8 predefined age categories ranging from 0 

to 60 months, were prospectively recruited at a large community health centre in 

Blantyre, Malawi, from March 2009 to January 2011. Children with malaria parasitemia, 

a positive HIV antibody test, severe anaemia (haemoglobin <7 g/dL), malnutrition 

(weight-for-height z score ≤2), or any other chronic illness were excluded from the study. 
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Table 3- A: General Characteristics, Nutritional and Haematological Profile 

Gender  

Parameter Female Male  All  

Median participants (%) 35 (43.7) 45 (56.3) 80 (100) 

Median age in months (range) 13.2 (0-52.5) 10 (0-47) 10.2 (0-52.5) 

Median weight in kgs (range) 9.5(3.5-17)ᵃ  10(6-16.9)ᵇ ND 

Median height cm (range) 73.5(48-97)ᵃ 74(52-95)ᵇ ND 

Median weight for height z-score (range) 0.89(-1.9-4.6)ᵃ 1.4(-2-4)ᵇ ND 

Median lymphs x10ᶺ3/μl (range) 6.3(2.9-13.46) 5.3(2.2-10.4) 5.4(2.2-13.6) 

Median Hgb in g/dl (range) 11.5(7.6-18.1) 11.2(8.0-17.7) 11.4(7.6-18.1) 

Abbreviations: ND, Not done   

ᵃ Twenty-five children aged 1-60 months were included. 

ᵇ Thirty-five children aged 1-60 months were included. 
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3.4.2 Age distribution of S. Typhimurium bacteraemia in under-five children in 

Malawi 

Between January 2006 and December 2011 S. Typhimurium bacteraemia was detected in 

449 children <5 years of age presenting to QECH, of whom 359/449 (80%) were <2 

years. The median age of S. Typhimurium bacteraemia was 13 months (range 0-60) 

(Figure 3.1). It was noted that age distribution for S. Typhimurium bacteraemia had not 

changed as previously reported (MacLennan, et al., 2008).  

 

Figure 3. 1: Age distribution of S. Typhimurium bacteraemia in the first 5 years of 

life 

Number of S. Typhimurium blood culture isolates was plotted against age in months. N= 

449, the dashed line represents the median age = 13 months. 
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3.4.3 Development of memory CD4+ T cell subsets in children under-five years 

To provide a context for the subsequent assessment of functional T cell memory, overall 

development of T cell subsets in Malawian children was assessed. Newborns are 

pathogen inexperienced (Ygberg & Nilsson, 2012) and therefore CD4+ T cells develop 

memory with age, enabling them to mount rapid immune responses to previously 

encountered pathogens. Naïve, effector and central memory CD4+ T cells can be 

differentiated by their extra-cellular expression of CD45RO and CCR7 (Mackay, et al., 

1990, Bunce & Bell, 1997). CD4+ T cell subsets were gated as described in Chapter 2: 

section 2.1.7.9. As expected (Chipeta, et al., 1998), the proportion of CD4+CD45RO-

CCR7+ naïve T cells decreased with age (r²=0.246, slope -0.58, 95% CI [-0.83, -0.34] 

p=<0.01) (Figure 3.2A). The proportion of CD4+CD45RO+CCR7- EM T cells (r²=0.119, 

slope 0.035, 95% CI [0.012, 0.057] p=<0.01) and CD4+CD45RO+CCR7+ CM T cells 

increased with age (r²=0.455, slope 0.43, 95% CI [0.32, 0.55] p=<0.01) (Figure 3.2B and 

3.2C). As expected the proportion of CD4+CD45RO-CCR7+ naïve T cells were lower in 

adults compared to children under-five (Figure 3.2A and 3.2D), while the proportion of 

CD4+CD45RO+CCR7- EM T cells and CD4+CD45RO+CCR7+ CM T cells were higher 

in adults compared to children under-five (Figure 3.2B-D). 
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Figure 3. 2: Development of memory CD4+ T cell subsets in the first 5 years of life 

Percentage of naïve CD4+ T cells: CD4+CD45RO-CCR7- (Figure 3.2A, n=73), 

effector memory CD4+ T cells: CD4+CD45RO+CCR7- (Figure 3.2B, n=73) 

and central memory CD4+ T cells: CD4+CD45RO+CCR7+) (Figure 3.2C, 

n=73) were plotted against age. Memory CD4+ T cells were determined by 

linear regression, represented by solid central line, and 95% CI represented by 
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dashed lines. Percentage of CD4+ T cell subsets in adults (Figure 3.2D, n=16). 

The mean, and 95% CI represented are shown. 

 

3.4.4 Development of S. Typhimurium-specific intracellular cytokine staining 

assay 

To determine the optimum concentration for stimulating whole blood (WB) for the 

detection of CD4+ and CD8+ T cells producing IFN-γ, WB was stimulated with varying 

concentrations of S. Typhimurium strain D23580 homogenate. Whole blood (WB) 

stimulation with  S. Typhimurium homogenate at 100 µg/ml resulted in lowest magnitude 

of CD4+ T cells producing IFN-γ while stimulation at 1 µg/ml triggered the highest 

magnitude of CD4+ T cells producing IFN-γ (Figure 3.3A). WB stimulation with S. 

Typhimurium homogenate at 0.1µg/ml triggered lowest magnitude of CD8+ T cells 

producing IFN-γ. Similar to CD4+ T cells responses; WB stimulation at 1 µg/ml 

triggered the highest magnitude of CD8+ T cells producing IFN-γ (Figure 3.3B).  It was 

resolved to use S. Typhimurium homogenate at 1µg/ml for WB stimulation in successive 

experiments. Optimum blood stimulation time, for the detection of cytokine producing T 

cells was investigated. WB stimulated with PMA/ION stimulated at varying time 

intervals was examined for CD4+ and CD8 T cells producing IFN-γ. Highest magnitude 

of CD4+ cells producing IFN-γ was detected at 8 hours of stimulation while for CD8+ T 

cells producing IFN-γ, it was detected at 6 hours of stimulation (Figure 3.3C-D). It  was 

observed that the magnitude T cell responses (producing IFN-γ) increased progressively 
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at 2 to 6 hours (Figure 3.3C-D). Although, WB stimulation with PMA/ION was highest 

at 8 hours in CD4+ T cells, 6 hours stimulation was chosen in successive experiments. 
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Figure 3. 3: Optimization of S. Typhimurium-specific intracellular cytokine staining 

assay 

WB was stimulated S. Typhimurium homogenate at varying concentrations as indicated 

(Figure 3.3A-B). Percentage of CD4+ and CD8+ T cells producing IFN-γ are shown 

(Figure 3.3A-B). WB was stimulated with at varying time intervals as indicated (Figure 
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3.3C-D). Percentage of CD4+ and CD8+ T cells producing IFN-γ are shown (Figure 

3.3A-B). For all experiments n=1 

 

3.4.5 Early acquisition of S. Typhimurium-specific CD4+ T cell immune responses 

To explore the hypothesis that CD4+ T cell immune responses to S. Typhimurium 

develop in parallel with acquisition of antibody-mediated immunity. CD4+ T cells were 

defined as described in Chapter 2, section 2.1.7.7 and 2.1.7.8. Contrary to this study 

hypothesis, S. Typhimurium-specific CD4+ T cells producing cytokine were detected 

early in life, peaked at 14 months and then decreased with age (Figure 3.4A).  
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Figure 3. 4: Early acquisition of S. Typhimurium-specific CD4+T cell immune 

responses  

Percentage of S. Typhimurium-specific CD4+ T cells producing total cytokine (Figure 

3.4A, n=68) early (Figure 3.4B, n=36), late (Figure 3.4C, n=32), PMA/ION stimulated 

CD4+ T cells producing total cytokine (Figure 3.4E, n=62), Percentage of S. 

Typhimurium-specific CD8+ T cell producing cytokine (Figure 3.4D, n=62). Nonlinear 

polynomial regression models of third order were fit to data relating specific T cell 

cytokine response with age. S. Typhimurium-specific T cells response within  early and 

late periods was determined by linear regression, represented by solid central line, and 

95% CI  represented by dashed lines. 
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This was further analysed by using the non-linear model peak points as defining early and 

late S. Typhimurium -specific CD4+ T cells. This showed early acquisition of S. 

Typhimurium -specific CD4+ T cell immunity (r²=0.129, slope 0.021, 95% CI [0.002, 

0.041], p=0.031), followed by a decrease in older children (r²=0.157, slope -0.005, 95% 

CI [-0.009, -0.0006], p=0.024) (Figure 3.4A and 3.4C). These changes in intra-cellular 

cytokine profiles mirrored changes in IFN-γ- and TNF-α-, rather than IL-2-secreting cells 

(Figure 3.5). Unexpectedly, S. Typhimurium-specific CD4+ T cell responses were 

generally lower in adults compared to children under-five (Figure 3.5A-D). 
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Figure 3. 5: Early acquisition of S. Typhimurium-specific CD4+T cell immune 

responses 

Blood samples were analysed for S. Typhimurium-specific CD4+ T cells producing 

cytokines using ICS assay. Percentage of S. Typhimurium-specific CD4+ T cells 

producing IFN-γ (Figure 3.5A, n=68), IL-2 (Figure 3.5B, n=68), TNF-α (Figure 3.5C, 

n=67). The immune response with age was determined by nonlinear regression 



Development of adaptive immunity in children  
 

131 
 

polynomial models represented by solid line. The immune responses in adults (Figure 

3.5D, n=20). Bars represent median. 

 

S. Typhimurium-specific CD4+ cytokine responses did not correlate with PMA/ION 

stimulated CD4+ T cell cytokine responses (r=0.109, 95% CI[-0.128, 0.371] p=0.426) 

(Table 3-B), indicating that these responses to S. Typhimurium antigens were not simply 

due to a general maturation of the immune system (Figure 3.4E and Figure 3.6). 

Interestingly, the trend of S. Typhimurium -specific CD4+ cytokine responses were 

similar to S. Typhimurium-specific CD8 cytokine responses (Figure 3.4A and 3.4D). 

Similar trend of specific CD4+ and CD8+ responses re-affirms the pattern of S. 

Typhimurium-specific T cell immune responses. 
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Table 3- B: Association between immune variables 

Parameter (s) XY Pairs Spearman r 95% Cl P value  

NTS vs PMA CD4+Cytokine+ 55 0.109 -0.128, 0.371 0.426 

SBA vs anti- S. Typhimurium -LPS IgG 

antibody titers 55 0.329 0.552, 0.062 0.01 

SBA vs anti- S. Typhimurium -OMP IgG 

antibody titers 57 0.044 -0.226, 0.308 0.741 

SBA vs anti- S. Typhimurium -FliC IgG 

antibody titers 58 -0.001 -0.266, 0.264 0.992 

SBA vs anti-E. coli-LPS IgG antibody 

titers 50 0.031 -0.257, 0.314 0.830 

CD4+ Cytokine+ vs anti- S. 

Typhimurium -OMP IgG antibody titers 65 0.137 -0.117, 0.375 0.275 

CD4+ Cytokine+ vs anti- S. 

Typhimurium -FliC IgG antibody titers 67 0.174 -0.075, 0.404 0.157 

CD4+ Cytokine+ vs anti- S. 

Typhimurium -OMP IgG antibody titers 

(early)ᵃ 39 0.405 0.088, 0.647 0.01 

CD4+ Cytokine+ vs anti- S. 

Typhimurium -FliC IgG antibody titers 

(early)ᵃ 38 0.394 0.080, 0.637 0.01 

CD4+ Cytokine+ vs anti- S. 

Typhimurium -LPS IgG antibody titers 

(early)ᵃ 36 -0.257 -0.547, 0.087 0.129 

Abbreviations: Cl, confidence interval 

 ᵃ Early refers to parameters of participants aged less than 14  months 
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Figure 3. 6: Acquisition of PMA/ION-specific CD4+T cell immune responses 

Blood samples were analysed for PMA/ION specific CD4+ T cells producing cytokines 

using ICS assay. Percentage of PMA/ION-specific CD4+ T cells IFN-γ (Figure 3.6A, 

n=62), IL-2 (Figure 3.6B, n=62), TNF-α (Figure 3.6C, n=62). The immune response with 

age was determined by nonlinear regression polynomial models represented by solid line.  
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Generation of antigen-specific multiple cytokine-producing cells is widely thought to 

indicate maturation of antigen-specific CD4+ T cell responses (Kannanganat, et al., 

2007). Maturation of S. Typhimurium -specific T cell responses in these healthy children 

(either double or triple cytokine producers) peaked mostly between 13-24 months and 

subsequently declined, while for IL2+TNFα+CD4 T cells, the response was sustained 

(Figure 3.7).  

 

 

Figure 3. 7: S. Typhimurium-specific CD4+ T cell cytokine profiles in children 
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S. Typhimurium-specific CD4+ T cells producing IFN-γ, TNF-α and IL-2 were detected 

using ICS assay. CD4+ T cells producing multiple cytokines were analysed using FlowJo 

version 7.6.5 and graphs generated by Prism version 5.0. S. Typhimurium -specific CD4+ 

T cells producing single cytokine, double cytokines and triple cytokines were shown with 

age (Figure 3.7).  

 

3.4.6 Delayed acquisition of S. Typhimurium -specific SBA  

To confirm previous observations made in Blantyre by MacLennan et al, the same SBA 

assay and clinical S. Typhimurium strain D23580 (MacLennan, et al., 2008) were used 

and described in Chapter 2, section 2.17.10. In line with the previous findings, S. 

Typhimurium-specific SBA declined in the first 8 months of life and then increased to a 

peak at 35 months (Figure 3.8A).  
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Figure 3. 8: Acquisition of S. Typhimurium-specific serum bactericidal activity 

among children 

Log 10 change in S. Typhimurium cfu/ml from the control condition was plotted against 

age. The y-axis was inverted. Nonlinear regression polynomial model was represented by 

solid line (Figure 3.8A, n=65). SBA responses within early (Figure 3.8B, n=29), and late 
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periods (Figure 3.8C, n=27) was determined by linear regression, represented by solid 

central line and 95% CI represented by dashed lines. 

 

To further analyse these trends in S. Typhimurium-specific SBA, periods were divided 

into early and late phases according to peak and nadir points, as before. S. Typhimurium -

specific SBA declined in the first 8 months of life (r²=0.323, slope 0.292, 95% CI [0.125, 

0.459], p=<0.01), and then increased between 8-35 months (r²=0.319, slope -0.121, 95% 

CI [-0.193, -0.048], p=<0.01), (Figure 3.8A and 3.8C). This S. Typhimurium-specific 

increase in SBA occurred later than that seen in T cell immunity to S. Typhimurium 

(Figure 3.4 and 3.8). 

 

3.4.7 S. Typhimurium -specific SBA correlates with presence of antibodies 

targeting S. Typhimurium -LPS 

Previous work in HIV-infected Malawian adults showed that excess anti-LPS IgG 

antibodies can inhibit complement-mediated killing of NTS in vivo while antibodies to 

outer membrane proteins (OMP) can mediate bactericidal activity (MacLennan, et al., 

2010). To clarify the antigenic targets of the S. Typhimurium-specific antibody in 

children, serum antibodies to S. Typhimurium LPS, OMP and FliC and E. coli 0127:B8 

LPS were measured  as described in Chapter 2, section 2.1.7.11. Anti- S. Typhimurium-

LPS IgG antibody titers mirrored the pattern seen with SBA assay (Figure 3.8A and 

Figure 3.9A).  
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Figure 3. 9: Age dependent acquisition of specific anti- S. Typhimurium-IgG 

antibodies 

Serum from children was tested for anti-S. Typhimurium-specific IgG antibodies by 

ELISA. Anti-S. Typhimurium-LPS IgG (Figure 3.9A, n=63), anti- S. Typhimurium OMP 

IgG (Figure 3.9B, n=66), anti-S. Typhimurium-FliC IgG (Figure 3.9C, n=67) and anti-

E.coli-LPS IgG antibody titers (Figure 3.9D, n=63) were plotted against age. SBA with 

age was determined by nonlinear regression polynomial models represented by solid line. 

The immune responses in adults (Figure 3.9E, n=12). Bars represent median. 
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Anti- S. Typhimurium -OMP, were lowest at birth increasing with age while anti- S. 

Typhimurium -FliC IgG and anti-E. coli-LPS IgG antibody titers showed no particular 

trend with age (Figure 3.9B-D). The correlation between SBA and anti- S. Typhimurium-

LPS IgG titers (r=0.329, 95% CI [0.552, 0.062] p=0.01) and the lack of correlation 

between SBA and anti-E. coli-LPS titers suggest that SBA is due to S. Typhimurium -

specific rather than non-specific LPS antibodies (Table 3-B). A lack of a correlation with 

anti- S. Typhimurium -OMP and anti- S. Typhimurium-FliC suggest that these targets do 

not substantially contribute to SBA in these children. 

 

3.4.8 S. Typhimurium -specific CD4+ T cell immune responses in early childhood 

are associated with generation of anti- S. Typhimurium protein antibodies 

Having shown that S. Typhimurium -specific CD4+ T cells peak in early life (Figure 

3.10), whether this immune memory was linked to the generation of anti- S. 

Typhimurium -OMP and anti- S. Typhimurium -FliC IgG antibodies was then 

investigated.  
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Figure 3. 10: Sequential acquisition of T cells and antibodies to S. Typhimurium in 

children 

Age distribution of S. Typhimurium BSI in under-five children at QECH Blantyre, 

Malawi 2006-2011 was superimposed with kinetics of S. Typhimurium -specific CD4+T 

cell immune responses and S. Typhimurium -specific serum bactericidal activity (y-axis 

was inverted) in children (0-60 months age).  

 

S. Typhimurium -specific CD4+ T cell immune responses correlate with anti- S. 

Typhimurium -OMP and anti- S. Typhimurium -FliC IgG antibodies in early childhood 

(r=0.405, 95% CI[0.088, 0.647] p=0.01  and  r=0.394, 95% CI[0.080, 0.637]  p=0.01 

respectively) and not anti- S. Typhimurium -LPS IgG antibodies (r=-0.257, 95% CI[-
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0.547, 0.087]   p=0.129) (Table 3-B). This contemporaneous development of antibodies 

to S. Typhimurium OMP and T-cell immunity is in line with the conventional paradigm 

of the T cell dependent immune response to a protein antigen (Sinha, et al., 1997, Mohr, 

et al., 2010).  

 

3.5 DISCUSSION 

NTS bacteraemia remains an important cause of death among children in SSA. This study 

extend previous observations that complement-fixing antibodies to NTS are considered to 

be ‘protective’ and develop by 24 months of age (MacLennan, et al., 2008). S. 

Typhimurium specific CD4+ immunity peaked in early life (14 months of age), 

suggesting exposure to S. Typhimurium or to cross reactive antigens. It is likely that this 

exposure occurs within the gut associated lymphoid tissues (GALTs) and primed  T cells 

traffic into the peripheral circulation (Dougan, et al., 2011). Surprisingly, in older 

children (>14 months) specific T cells declined in the peripheral blood, probably due to a 

decline in S. Typhimurium specific exposure within the GALT. Together these findings 

suggest unique phases of S. Typhimurium exposure and T cell priming (early phase) and 

this perhaps permits antigen-specific to CD4+ T cells spilling into the peripheral blood.  

It is possible that the late phase is characterized by limited S. Typhimurium exposure and 

pathogen clearance by the CM T cells. Some confirmation of these findings is noted in 

the correlation of S. Typhimurium -specific T cell immune responses in early life and the 

antibody titers to S. Typhimurium protein antigens and not S. Typhimurium LPS. 

Furthermore the trends of S. Typhimurium - specific CD4+ and CD8+ cytokine producers 
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were similar suggesting the maturation of both CD4+ and CD8+ T cells following 

Salmonella exposure. 

 

Distribution of NTS within the gastrointestinal tract (GIT) by age in this population is not 

known. As previous demonstrated, this study has shown that S. Typhimurium 

bacteraemia peaks at 13 months of age and 80% of cases occur in children under-two 

among under-five children (MacLennan, et al., 2008). Whether this age distribution in S. 

Typhimurium bacteraemia indicates asymptomatic S. Typhimurium colonization within 

the gut is not clear. Contracting Salmonella infection occurs through ingestion of 

contaminated food or fomites (Kariuki, et al., 2006). In this population exclusive breast 

feeding is practiced mainly in the first 3 months of age and thereafter mixed feeding in 

commonly practiced (Kalanda, et al., 2006, Kerr, et al., 2007). It appears that the 

introduction of supplementary feeding coincides with the age group of S. Typhimurium 

bacteraemia. Risk factors of S. Typhimurium bacteraemia include malnutrition and HIV. 

The leaky gut mucosa in malnourished and HIV infected children (Reynolds, et al., 1996, 

Papasavvas, et al., 2011) might contribute to spread of S. Typhimurium normally 

localized in the GIT into the peripheral blood. The emergence of MDR and more virulent 

S. Typhimurium strain D23580 (driven by genetic degradation) (Kingsley, et al., 2009), 

might explain changes in life style of an organism that causes localized gastroenteritis 

worldwide but predominately causes invasive disease in otherwise healthy children in 

SSA. 
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Serum killing of an invasive S. Typhimurium strain D23580 that is predominant in the 

SSA region requires IgM or IgM S. Typhimurium specific-antibodies (MacLennan, et al., 

2008). In the absence of the S. Typhimurium-specific IgG antibody, the SBA is abrogated 

(Heffernan, et al., 1992, MacLennan, et al., 2008). As previously demonstrated 

(MacLennan, et al., 2008), this study demonstrates that passively acquired S. 

Typhimurium specific SBA from the mother gradually declines from birth to about 8 

months of age. This is consistent with the observation that  transfer of both immune 

serum and immune cells were necessary for protection to mouse-virulent strain S. 

Typhimurium C5 in innately susceptible BALB/c (ltys) mice (Mastroeni, et al., 1993). 

After 8 months of age, presumably following exposure to Salmonella, antigen-specific 

SBA develops with age and peaks at 36 months. Interestingly, this study shows that this 

specific SBA correlates with S. Typhimurium specific antibodies targeting LPS and not 

OMP and FliC. MacLennan et al previously demonstrated that in HIV infected Malawian 

adults S. Typhimurium-specific antibodies targeting LPS were SBA inhibitory and not S. 

Typhimurium specific antibodies targeting OMP. This was due to the high concentration 

of S. Typhimurium-specific IgG antibodies targeting LPS, which is not the case in 

healthy Malawian children examined in this study. High concentration of S. 

Typhimurium specific IgG antibodies in HIV infected individuals are likely due to leaky 

gut that might permits transfer of LPS molecules into the peripheral blood (Papasavvas, 

et al., 2011). 
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Taking into account age related acquisition of S. Typhimurium-specific T cell immune 

responses, it appears that acquisition of SBA is delayed. Perhaps not surprising, naturally 

acquired antibody responses to pneumococcal specific protein antigens appear early 

compared to antibodies to pneumococcal-specific-polysaccharide antigens in children 

(Rapola, et al., 2000, Soininen, et al., 2001). Furthermore, the process of generation of 

highly efficient isotype-switched IgG antibodies is dependent on CD4+ T cells and B cell 

cross talk (Cunningham, et al., 2007), suggesting that mature complement-fixing 

antibodies to S. Typhimurium are expected to follow the emergence of specific T cells.   

 

Immunity to Salmonella is considered complex due Salmonella facultative intracellular 

lifestyle and its strategies to escape even the competent host immune system. It has been 

hypothesized previously that high level of resistance to Salmonella is established in a 

step-wise fashion; innate immunity (innate cells and humoral immunity) preceding the  

adaptive immunity (beginning with the CD4+ T cell followed by the B cells and CD8+ T 

cells) (Mastroeni, 2002). In this study, the kinetics of S. Typhimurium -specific immunity 

(antibodies and T cells) and age distribution of S. Typhimurium bacteraemia were 

explored. Importantly cases of S. Typhimurium bacteraemia declines in parallel with 

decline in specific-CD4+ T cell immune responses and increase in SBA. Furthermore, 

cases of S. Typhimurium bacteraemia were more at the peak of CD4+ T cells responses, 

suggesting that CD4+ cells alone are not sufficient to clear S. Typhimurium infection and 

sequential acquisition of specific-SBA results in establishment of high level of resistance 

and decline in cases of S. Typhimurium bacteraemia.  
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Since salmonellae are facultative intracellular organism, complement-fixing antibodies 

are implicated in killing S. Typhimurium in the extracellular space and supports 

intracellular killing (Gondwe, et al., 2010). CD4+ T cells helps macrophages intracellular 

killing of S. Typhimurium and importantly clears reside S. Typhimurium that can 

potentially cause relapse of S. Typhimurium bacteraemia (Mastroeni, 2003). Taken 

together these findings are in agreement with the hypothesis that S. Typhimurium 

immunity is acquired in a step-wise fashion and high level of resistant is only established 

when both the T cell and antibody immunity are fully mature. 

 

Given the burden of iNTS in SSA (Reddy, et al., 2010), a vaccine is urgently required. S. 

Typhimurium LPS O-antigen has considerable potential as a vaccine target and there are 

currently several groups developing conjugate vaccines for this purpose to overcome the 

short-lived T-independent antibody response generated by polysaccharide alone 

(MacLennan, 2013). Immunization with S. Typhimurium -OMP and S. Typhimurium-

FliC induce both T cells response and production of antibodies in animal models, and 

these Salmonella derived proteins are therefore also being investigated as vaccine 

candidates, either separately (Gil-Cruz, et al., 2009) or covalently linked to O-antigen as 

glycoconjugates (Simon & Levine, 2012). 

 

Summary  

In Malawian children T cell and antibody immunity to S. Typhimurium are acquired 

sequentially.  Acquisition of both T cell mediated immunity and antibodies are required 
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for robust resistance to invasive Salmonella disease. Children below 2 years of age are 

more vulnerable to invasive Salmonella disease and public health intervention inform of 

vaccination is required. A vaccine that elicits both T cell and antibody immunity and also 

provide cross protection to common Salmonella serovars is required particularly in young 

children. 
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CHAPTER 4: SALMONELLA EXPOSURE AND DEVELOPMENT OF SPECIFIC 

IMMUNITY IN MALAWIAN CHILDREN 

 

4.1  INTRODUCTION 

As reviewed previously (chapter 1), Nontyphoidal Salmonella (NTS), principally S. 

Typhimurium and S. Enteritidis are among the commonest causes of bacteraemia in sub-

Saharan Africa (SSA)(Gordon, et al., 2008, Morpeth, et al., 2009). NTS infections are 

most common in children below 3 years of age and HIV-infected individuals (Gordon, et 

al., 2008, MacLennan, et al., 2008, Graham & English, 2009). Understanding what 

constitutes naturally acquired protective immunity to Salmonella and defining the age 

group when this acquisition occurs is important for understanding the pathogenesis of the 

disease and for the development of an effective vaccine. Opsonic IgG antibodies to 

Salmonella facilitate efficient killing of Salmonella in the extracellular space, primarily 

the blood, by fixing-complement (MacLennan, et al., 2008) and intracellular space of 

phagocytes by respiratory burst (Gondwe, et al., 2010). Acquisition of serum bactericidal 

activity (SBA) to S. Typhimurium has been described in Chapter 3, as peaking at 36 

months of age, which coincides with the decline in incidence of S. Typhimurium 

bacteraemia. Furthermore, Chapter 3 describes that CD4+ and CD8+ T cell immunity to 

S. Typhimurium are acquired early in life in Malawian children, peaking at 14 months of 

age, suggesting that the gut associated lymphoid tissues (GALTs) are exposed to S. 

Typhimurium or cross-reactive bacteria during this period.  
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Age distribution of Salmonella bacteraemia in Malawian children has been described in 

Chapter 3 and previously by MacLennan et al (MacLennan, et al., 2008), as peaking at 

13 months of age in under-five children but the age distribution of Salmonella exposure 

within the gastrointestinal tract (GIT) in this population is not known. Salmonella 

infection is thought to result from ingestion of contaminated food, water or contact with 

contaminated fomites (Kariuki, et al., 2006). A cohort study of Mexican children from 

birth to 12 months of age, demonstrated that 40% of children were initially exposed to 

Salmonella (detected by culture) within the GIT (Cravioto, et al., 1990). Under-five 

children have been shown to shed Salmonella in their stools for as long as 7 weeks 

(Buchwald & Blaser, 1984). In Malawi, in a study of children presenting to hospital with 

NTS bacteraemia, 40% (66/167) had Salmonella also isolated from the oropharynx, and 

52% (73/141) had Salmonella also isolated from stool at the point of diagnosis (Msefula, 

2009). Salmonella exposure within the oropharynx and/ or GIT might help to explain the 

natural immunizing events in children from SSA, and neither the acquisition of humoral 

immunity, following gut or oropharyngeal mucosal exposure, have previously been 

studied longitudinally in Malawian children. It is uncertain whether this Salmonella 

exposure within the GIT is asymptomatic or accompanied by an episode of diarrhoeal 

disease, which could be mild and transient or severe (Cravioto, et al., 1990). This study 

therefore aimed to explore the hypothesis that in the first 18 months of life, the 

gastrointestinal tract is exposed to Salmonella serovars or other cross-reactive enteric 

pathogens with minimal symptoms which induce the development Salmonella-specific 



Salmonella exposure and development of specific immunity  
 

149 
 

serum immunity. This immunity might have the potential to protect against subsequent 

Salmonella infection and particularly invasive NTS disease.  

 

Maternal breast milk antibodies (principally IgA) and trans-placental maternal IgG are 

thought to have a role in defence against pathogens in infancy. The protective role of 

breast milk against enteric pathogens has been recognized for a long time (France, et al., 

1980, Cravioto, 1990, Thomas, et al., 2004, Shapiro, et al., 2007); and has been shown to 

be critically important for Malawian infants (Kafulafula, et al., 2010). Chapter 3 shows 

that NTS bacteraemia is most frequent as maternally acquired (trans-placental) serum 

antibody wanes and following discontinuation of breast feeding or following introduction 

of supplementary food. This suggests that either or both trans-placental IgG and breast 

milk IgA might play a role in preventing Salmonella colonisation of the gastrointestinal 

tract in the early months of life.   

From this background, a prospective longitudinal cohort study of 60 healthy infants at 

Zingwangwa health centre (ZHC) in Blantyre, Malawi was conducted. These children 

and their mothers were recruited at 6 months of age and followed up until 18 months of 

age, to determine the association of Salmonella exposure within the GIT and oropharynx 

(examined at monthly intervals using stool and oropharyngeal samples, analysed by 

culture and real-time PCR) and the development of serum immunity to Salmonella 

(examined at 3 month intervals using serum killing assay). Furthermore, maternal breast 

milk bactericidal activities were quantified to explore their role in preventing Salmonella 

colonisation of the GIT. 
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Hypothesis: In the first 18 months of life, the gastrointestinal tract and / or oropharynx 

are exposed to Salmonella serovars which induce the development of Salmonella-specific 

serum immunity. 

 

Study objectives: 

c) To determine the pattern of Salmonella exposure events within the GIT and 

oropharynx in Malawian children over a period of 1 year from 6 to 18 months of age.  

d) To determine whether Salmonella exposure events in children are associated with 

acquisition of Salmonella-specific serum killing. 

e) To determine whether maternal breast milk kills Salmonella ex vivo. 

 

4.2  PARTICIPANT RECRUITMENT AND METHODS 

The participant recruitment and methods for this chapter have been described in Chapter 

2 section 2.2. In brief, 60 healthy children and their mothers were recruited from 

Zingwangwa Health Centre (ZHC) at 6 months of age and followed for 1 year. ZHC 

provides primary health care to persons living in Soche Ward (SW) of Blantyre city. SW 

is one of the densely populated wards in Blantyre, with the population of 60,000 (MCI, 

2012). Child participants were sampled stool and oropharynx swab at monthly intervals 

and were also sampled serum at 3 months intervals. Mothers of each child participant 

were sampled serum at study entry only and also sampled breast milk at 6 months 

intervals. To determine the pattern of Salmonella exposure, stool and oropharynx swabs 
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were examined for Salmonella using standard culture or PCR. Serum from children 

exposed to Salmonella or not was quantitatively examined for serum bactericidal activity 

to S. Typhimurium strain D23580, S. Typhimurium 037v4 and Salmonella species 049v3. 

Maternal breast milk was also quantitatively examined for breast milk bactericidal 

activity to S. Typhimurium strain D23580. At monthly intervals children were clinically 

examined (MUAC, Temperature, and malaria rapid test) and clinical history (diarrhoea, 

cough, antimalarial and antibiotics usage) was taken by the research nurse. Research 

nurse also administered a questionnaire to mothers to explore child feeding practices 

including breast feeding, water source and water treatment. Global Positioning System 

(GPS) coordinates for each child place of residence were captured by the research field 

worker.  

 

4.3  STATISTICAL ANALYSES 

Statistical analyses were performed using GraphPad Prism version 5 (GraphPad 

Software, USA) and Stata SE® version 12.1 (StataCorp, USA) statistical analysis 

packages. End-point response variables (SBA) were examined for normality of 

distribution. Normally distributed immune variables were analysed using paired t test to 

compared groups at different time points. Two-tailed nonparametric, Mann-Whitney tests 

were used to compare immune variables at different time points. Kaplan-Meier survival 

function test was used to demonstrate the trend of Salmonella exposure events and 

feeding practices with age. Odd ratios were used to describe the relationship between 

Salmonella exposure events and clinical presentation, Salmonella exposure events and 
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feeding practices and Salmonella exposure events and serum bactericidal activity. Global 

Positioning System (GPS) visualizer (www.gpsvisualizer.com) was used to draw maps 

for the study participant’s places of residence. Logistic regression analyses were used to 

describe the relationship between location absolute altitudes and Salmonella exposure 

events. 95% confidence intervals or interquartile range (IQR) were reported and p value 

of <0.05 or confidence intervals not crossing 1 were considered statistically significant.  

 

4.4  RESULTS 

4.4.1 Incidence of first Salmonella exposure within the GIT in a cohort of healthy 

Malawian children 

A total of 60 healthy children were recruited (25 were male [42%]) at 6 months of age 

between August 2013 and December 2013, and these were followed until December 2014 

for study specific procedures described in Chapter 2 section 2.2. A total of 630 stool 

samples from 60 children were examined for Salmonella (stool culture or rt-PCR) in this 

cohort. Kaplan–Meier survival analysis was used to describe the pattern of Salmonella 

exposure events. A total of 630 stool samples were examined for Salmonella (stool 

culture or rt-PCR) in this cohort, there were 105 observations beginning on or after the 

first exposure event within the GIT (stool samples). There were 525 observations 

remaining, from 60 children and 22 children were positive for Salmonella at least once 

during the follow up period. Mean number of visits per child was 9 (ranging from visit 1 

to 13) and by the 13
th 

study visit (18 months of age) 21.6% (13/60) of children, were lost 
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to follow up. These children (13/60) voluntarily withdrew from the study because their 

parents (father) or guardians (uncle/grandparent) were not willing for their child to 

participate in the study. Over the period of observation from 6 months to 18 months of 

age, 46.8% (22/47) of children were exposed to Salmonella (detected using culture and 

RT-PCR) within the GIT on at least one occasion (Figure 4.1).   
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Figure 4. 1: Incidence of first Salmonella exposure within the GIT in a cohort of 

healthy Malawian children 

Incidence of first Salmonella exposure within the GIT in a cohort of children recruited at 

6 months of age, examined for Salmonella exposure at monthly intervals and exiting the 

study at 18 months. Using Kaplan-Meier survival function test, this figure shows the 

proportion of children remaining unexposed over time (Figure 4.1).  

 

All stool samples (630) were examined by culture and from this total, 198 samples (these 

samples were of varying ages and were selected consecutively) were also examined by 
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real time PCR. Not all stool samples were tested using PCR because the test was 

developed when the study had already started and there was limited funding to test all 

samples. A total of 29 Salmonella exposure events were detected in stool by culture or 

real time PCR thus representing 4.6% (29/630) of the stool samples obtained and when 

Salmonella was detected in stool is shown  (Figure 4.2A). Salmonella exposure events 

among female and male children were similar, 18/368 (4.8%) and 11/251 (4.2%) 

respectively. Out of these 29 exposure events, 6 were detected by rt-PCR only and none 

were detected by culture only. The remaining 23 were serotyped using standard 

procedures as described in Chapter 2 section 2.2.8.7. Among stool samples that tested 

culture or PCR positive, salmonellae isolates were principally S. Typhimurium 51.7% 

(15/29), followed by non-defined serovars 31% (9/29), S. Typhi 10.3% (3/29)  and S. 

Enteritidis 7% (2/29) (Figure 4.2B).  Among samples analysed by both culture and PCR, 

there were 7/29 (24%) children exposed to Salmonella at least twice during whole study 

period (5/7 [71%] were 1 month apart and 2/7 [28.5%] were 3 months apart) and none 

was exposed more than twice. Among children that were exposed twice to Salmonella 

within the GIT; 5/7 (71%) to S. Typhimurium, 1/7 (14.2%) to S. Typhimurium and S. 

Enteritidis and 1/7 (14.2%) to S. Typhi and non-defined Salmonella serovars. A total of 

269 oropharynx swabs were tested for Salmonella by standard culture only and all 

samples tested negative for Salmonella. 
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Figure 4. 2:  Frequency of Salmonella exposure within the GIT in Malawian children 

Salmonella detected in stool samples by either culture (n=630) or rt-PCR (n-198) were 

plotted against varying ages as indicated (Figure 4.2A). Distribution of Salmonella 

serovars detected by culture or rt-PCR are shown (n=29) (Figure 4.2.B). 

 

 

4.4.2 Clinical features of Salmonella exposure  

Young children may have a relatively high background rate of intercurrent 

gastrointestinal symptoms  including diarrhoea, fever and vomiting  (Uhnoo, et al., 

1986). To explore whether or not children exposed to Salmonella were more likely than 

unexposed children to be symptomatic, clinical history in relation to Salmonella exposure 

events were reviewed.   

During the follow-up visits, there were a total of 54/563 (9.6%) current diarrhoea 

(defined as  3 loose stools per day) events recorded. There were 3/23 (13%) diarrhoea 
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events in children with Salmonella in their stool while 51/540 (9.4%) were found in stool 

negative children, OR 1.43 95% CI (0.41, 5.0) (Table 4-A). In the month prior to the 

follow-up visits, a total of 99/563 (17.6%) diarrhoea events were reported. 6/23 (26%) 

were reported in children that were exposed to Salmonella while 93/540 (17.2%) 

diarrhoea events were reported in non-exposed children, OR 1.69, 95% CI (0.65, 4.4) 

(Table 4-B). These findings showed that although there was a trend for children who had 

Salmonella detected in their stool to have diarrhoea or to have had a diarrhoea episode in 

the last month, this did not reach statistical significance.  Rotavirus is important causative 

agent of diarrhoea in Malawi (Cunliffe, et al., 2010). Recently the government of Malawi 

introduced rota virus vaccination (Madsen, et al., 2014). Coverage of rota virus 

vaccination in this cohort was 100% (60/60) at 6 months of age (study entry). To what 

extent the frequency of diarrhoea in this cohort was influenced by the recently rolled-out 

rotavirus vaccination in Malawi is not clear, but since coverage was so high, there is 

unlikely to be a difference between those who did or did not experience exposure to 

Salmonella.  
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Table 4- A: Clinical presentation among children at current visit  

 

Total 

(%) 

(N=563) 

Exposed 

(%) 

(N=23) 

Non-exposed (%) 

(N=540) 

 

Exposed vs non-

exposed 

OR (95% CI) 

 

Diarrhoea 54 (9.6) 3 (13) 51 (9.4) 1.43 (0.41, 5.0) 

Vomit 21 (3.7) 2 (8.7) 19 (3.5) 2.6 (0.57, 11.9) 

Cough 110 (19.5) 7 (30.4) 103 (19) 1.8 (0.74, 4.6) 

Temp >37.8
o
C 11(1.9) 2 (8.7) 9 (1.7) 5.6 (1.14, 27.6) 

Malaria 5 (0.9) 0 (0) 5 (0.92) ND 

MUAC 11-12.5cm
a 15 (2.6) 1 (4.3) 14 (2.6) 1.7 (0.21, 13.2) 

MUAC 12.5-13.5 cm
b 35 (6.2) 2 (8.6) 33 (6.1) 1.46(0.33, 6.4) 

MUAC 11-13.5 cm
c 50 (8.8) 3 (13) 47 (8.7) 1.57(0.45, 5.4) 

ND refers to not done  

a 
Moderate acute malnutrition (MAM) 

b 
At risk of acute malnutrition

 
 

c 
Combination of MAM and those at risk of malnutrition  

 

Table 4- B: Clinical history over the previous month among children 

 

Total 

(%) 

(N=563) 

Exposed (%) 

(N=23) 

Non-exposed (%) 

(N=540) 

Exposed vs non-

exposed 

OR (95% CI) 

Diarrhoea 99 (17.6) 6 (26) 93 (17.2) 1.69 (0.65, 4.4) 

Vomit 30 (5.3) 1 (4.3) 29 (5.4) 0.8 (0.104, 6.15) 

Cough 

127 

(22.5) 

5 (21.7) 122 (22.6) 0.95 (0.34, 2.6) 

Antibiotic 

139 

(25.9) 

7 (30.4) 132 (18.5) 1.35 (0.54, 3.35) 

Antimalarial 8 (1.4) 1 (4.3) 7 (1.3) 3.4 (0.4, 29) 

 

Malnutrition is commonly associated with NTS bacteraemia in children from SSA 

(Graham, et al., 2000, Babirekere-Iriso, et al., 2006). In this cohort, children Mid-Upper 

Arm Circumference (MUAC) ranging 11.5-19cm were recorded and the mean was 15cm. 
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MUAC measurements were grouped or defined as follows; <11cm severe acute 

malnutrition (SAM), 11-12.5cm moderate acute malnutrition (MAM), 12.5-13.5cm at 

risk of acute malnutrition and above 13.5cm well nourished. A total of 50/563 (8.8%) 

children had MUAC ranging 11-13.5cm and amongst these children 3/23 (13%) had 

Salmonella detected in theirs stool and 47/540 (8.7%) had no Salmonella detected in their 

stool (OR 1.57, 95% CI [0.45, 5.4]). Although not statistically significant, these findings 

suggested that malnutrition may be associated with a predisposition to Salmonella 

exposure in the gut. Similarly, there was a no significant difference for children to 

experience either cough (at current visit OR 1.8, 95% CI [0.74, 4.6]) or vomiting (at 

current visit OR, 2.6, 95% CI [0.57, 11.9] at the time when children stool was positive for 

Salmonella compared to when children stool was negative (Table 4-A).  

 

A total of 11/563 (1.9%) fever events (Temp >37.8
o
C) were recorded in this cohort at 

current visit, 2/23 (8.7%) were detected in children exposed to Salmonella while 9/540 

(1.7%) were detected in non-exposed children, OR 5.6, 95% CI (1.14, 27.6) (Table 4-A).  

These findings suggest that children whose stool culture was positive for Salmonella 

were 5.6 times more likely to have a current fever than children without a positive stool 

culture for Salmonella. Clinical features including fever, cough, vomiting and diarrhoea 

in which stool culture was positive for Salmonella may have resulted in non-specific 

symptomatic febrile illness. 
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Recent or current malaria infections are an important comorbidity of NTS bacteraemia in 

children from SSA (Graham, et al., 2000, Brent, et al., 2006, Bronzan, et al., 2007, 

Biggs, et al., 2014). The burden of malaria is considerably high in Malawi, particularly, 

in under-five children (Mathanga, et al., 2012), with asymptomatic parasitaemia rates 

ranging between 11.2-18.5% (Roca-Feltrer, et al., 2012). In Blantyre, the Plasmodium 

falciparum parasite rate for children 2-<10 years is the lowest in Malawi (26%) (Bennett, 

et al., 2013). It was therefore somewhat surprising that even for these very young urban 

dwelling children, at the current visit, only  0.9% (5/563) malaria events were recorded, 

none was among children that had Salmonella detected in their stool. Furthermore, during 

the previous month a total of 8/563 (1.4%) antimalarial usage events were recorded, 1/23 

(4.3%) were recorded in children exposed to Salmonella and 7/540 (1.3%) were recorded 

in non-exposed children, OR 3.4, 95% CI (0.4, 29). This difference was not significant, 

but the trend would be in keeping with literature suggesting that recent (rather than 

current) malaria is a risk factor for Salmonella disease (Brent, et al., 2006). It is also 

possible that antimalarial drugs were taken by children as syndromic management rather 

than a confirmed disease. These findings would need to be further explored in a much 

larger cohort. 

 

During the previous month a total of 139/563 (25.9%) antibiotic usage events were 

reported, 30.4% (7/23) antibiotic usage events were reported in children who were 

exposed to Salmonella and 24.4% (132/540) were reported in non-exposed children, OR 

1.35, 95% CI (0.54, 3.4). This difference was not statistically significant, but it is known 
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that administration of antibiotics may be a risk factor for more prolonged carriage of 

Salmonella (Miller, et al., 1954), or may alternatively be a proxy marker for recent febrile 

illness caused by carriage or indeed malaria. Taken together these findings suggest that 

some Salmonella episodes (ranging 8.7% to 30.4%) detected were associated with non-

specific symptomatic febrile illness. In keeping with the literature, recent malaria and 

prior antibiotic usage might be risk factors for Salmonella exposure in the GIT.  

 

 

4.4.3 Child feeding practices and Salmonella exposure  

Salmonella infection follows ingestion of contaminated food, water or contact with 

contaminated fomites (Kariuki, et al., 2006). Most Malawian babies are exclusively 

breast fed and introduced to supplementary food after 3 months of age (Kalanda, et al., 

2006); milk formula feeding is rare, particularly in the demographic sampled. Chapter 3 

demonstrates that T cell immunity to S. Typhimurium is detected early in life (peaking at 

14 months of age) suggesting early exposure to Salmonella serovars or cross-reactive 

enteric bacteria. From this background, child feeding practices in this cohort were 

retrospectively explored. In this cohort, all children were being breast fed at 6 months 

(study entry). Supplementary feeding had been gradually introduced: 9% by the first 3 

months of life; 29% by 4 months of age; 63% by 5 months of age and 91% by 6 months 

of age (Figure 4.3). At 18 months (study exit age), 8/47 (17%) of those children 

remaining in the study had discontinued breast feeding.  
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Figure 4. 3: Introduction of supplementary food in Malawian children  

Mothers were asked, at the study entry point (6 months of age) when they introduced 

supplementary food to their babies. Using Kaplan-Meier survival function test, 

percentage of children exclusively breast fed during the first 6 months of life are shown 

(Figure 4.3).  

 

Sources of water used by study participants at their homes were documented. A majority 

of families, 82.7% (466/563) were using tap water (Table 4-C). Among children that 

were exposed to Salmonella, 82.6% (19/23) were using tap water and among non-

exposed children, 82.7% (447/540) were using tap water, OR 0.99, 95% CI (0.32, 2.97). 

Among children that were exposed to Salmonella, 26% (6/23) were using boiled water 

for drinking and among non-exposed children, 35.1% (190/540) were using boiled water, 
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OR 0.65, 95% CI (0.25, 1.67). This non-significant trend showed that boiling water for 

drinking might have reduced Salmonella exposure or transmission.   

 

Table 4- C: Water source and Salmonella exposure 

 

Total (%) 

(N=563) 

Exposed (%) 

(N=23) 

Non-exposed (%) 

(N=540) 

Exposed vs 

non-exposed 

OR (95% CI) 

Tap 
466 (82.7) 19 (82.6) 447 (82.7) 0.99 (0.32, 2.97) 

Borehole 
64 (11.3) 1 (4.3) 63 (11.6) ND

a 

River 
23 (4) 3(13) 20 (3.7) 3.9 (1.07, 14.2) 

Bottle 10 (1.7) 0 (0) 10 (1.8) ND
a 

a
ND refers to not done  

 

Furthermore, a total of 64/563 (11.3%) observations were made on use of borehole water. 

Among children that were exposed to Salmonella, 4.3% (1/23) were using borehole water 

and among the non-exposed children, 11.6% (63/540) were using borehole water. While 

using water from the borehole appeared to have reduced Salmonella transmission, this 

was not statistically significant. A total of only 23/563 (4%) children were using river 

water for drinking. Among Salmonella exposed children, 13% (3/23) were using river 

water and among non-exposed children, 3.7% (20/540) were using river water, and this 

finding was statistically significant, albeit with wide confidence intervals because of the 

small numbers; OR 3.9, 95% CI (1.07, 14.2).  Together these findings suggest that 

Salmonella exposure occurred in these children following the introduction of 

supplementary food in nearly all children. Furthermore, using water from the river may 

be a risk factor for Salmonella exposure and although not statistically significant, use of 
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borehole or boiled water may be associated with reduced Salmonella transmission or 

exposure. A larger study would be needed to establish this definitively.  

 

4.4.4 Living adjacent to a river or water stream may be a risk factor for 

Salmonella exposure in children 

Both poor sanitary environment and food hygiene are important risk factors for the 

transmission of Salmonella (Crump & Mintz, 2010, Breiman, et al., 2012). In this cohort, 

geographical locations of these children’s homes (by protocol design coming from within 

5 kilometres radius from ZHC) were explored. Using GPS co-ordinates study 

participant’s homes locations were mapped by GPS visualizer (Figure 4.4A-B). Initially 

it appeared that children that were exposed to Salmonella appeared to reside in close 

proximity to the river or water streams. It is possible that families living nearer the river 

or water stream use contaminated water for household chores and also drinking. Children 

living at lower altitude relative to rivers might experience more “washout” surface water 

from contaminated sources or from contaminated standing groundwater near the river 

during rainy season when the water table is higher. However, when this was explored 

systematically using logistic regression analysis, the analysis did not show any statistical 

significant difference between the distribution of absolute altitude GPS locations of the 

homes of Salmonella-exposed and the non-exposed groups, OR 0.99, 95% CI (0.98, 1.0).  
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AA Salmonella exposed children 

 

BB Unexposed children 

 

Figure 4. 4: GPS mapping of the homes of Salmonella-exposed and unexposed 

children 
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A Google terrain map showing the GPS location of homes of children that were 

Salmonella-exposed (Figure 4.4A) and homes of children that were never exposed to 

Salmonella (Figure 4.4.B) 

 

Further more complex geospatial modelling analysis of absolute altitude, altitude above 

rivers, and distance from rivers is therefore planned, but is beyond the scope of this 

thesis, and further studies are required to understand the geospatial factors that are 

important in the transmission of Salmonella in this population. 

 

4.4.5 Maternal breast milk lacks Salmonella-specific bactericidal activity  

Maternal breast milk has a role in protecting children from a wide range of pathogens, 

including enteric pathogens (Hanson, et al., 1990). Previously it was demonstrated that 

breast fed children had 5 fold reduced risk of  Salmonella  gastroenteritis infection 

compared to non-breast fed children (Borgnolo, et al., 1996). Whether breast milk was 

able to kill or control the growth of Salmonella was investigated in this cohort. Chapter 2 

section 2.2.8.5, describes the development of the milk bactericidal activity assay. 

Unexpectedly, breast milk did not inhibit the growth S. Typhimurium strain D23580 by a 

least -1 log10 change cfu/ml, while maternal serum from the same mothers used as a 

control, robustly inhibited growth of  S. Typhimurium strain D23580 (p=<0.001, Mann-

Whitney test) (Figure 4.5).   
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Figure 4. 5: Maternal breast milk lack invasive Salmonella-specific bactericidal 

activity 

Log10 change in S. Typhimurium strain D23580 cfu/ml from the baseline condition in 

maternal serum and breast milk. PBS and heat inactivated milk were used as the baseline 

condition for maternal serum and breast milk respectively as describe in chapter 2 section 

2.2.8.5.  The red bars represents the mean (n=51).  

 

These findings suggest that breast milk itself lacks bactericidal activity against S. 

Typhimurium strain D23580. However, it is possible that breast-feeding might limit 

Salmonella colonisation within the GIT by other mechanisms apart from direct 

bactericidal activity, such as inhibition of colonisation or mucosal adherence, or by 

altering the infant’s gut microbiota (Weening, et al., 2005, Roger, et al., 2010, Mantis, et 

al., 2011, Stecher & Hardt, 2011). 
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4.4.6 Relationship between Salmonella exposure and serum bactericidal activity in 

children 

Chapter 3 describes that SBA to S. Typhimurium strain D23580 is acquired with age and 

peaks at 36 months of age in Malawian children, while T cell immunity to S. 

Typhimurium is acquired early in life, peaking at 14 months of age. Whether or not this 

antibody and T cell immunity development is facilitated by mucosal Salmonella exposure 

is a key question. In this cohort, two stool Salmonella isolates (S. Typhimurium ID 037v4 

and Salmonella spp. ID 049v3 isolated from children 9 months and 8 months old 

respectively)  were selected  to be used in SBA experiments in parallel with S. 

Typhimurium  strain D23580 (a sequenced and well-characterised blood isolate 

(Kingsley, et al., 2009)). Using serum from 6 month-old children, D23580 and 037v4 

resistance to serum killing was similar while 049v3 was significantly more sensitive to 

serum  killing  compared to D23580 and 037v4 (Mean;  D23580 -0.09, 95% CI[-0.44, 

0.24]  vs  049v3  -2.52, 95% CI[-2.82, -2.22]), (Mean; 037v3 0.001, 95% CI[-0.40, 0.40]  

vs 049v3 -2.52, 95% CI[-2.82, -2.22]) (Figure 4.6A). Whether S. Typhimurium D23580 

and S. Typhimurium 037v4 are genetically similar will be addressed by whole genome 

sequencing in future studies. In relation to SBA, there was positive correlation between 

SBA to D23580 and SBA to 037v4, using serum from children aged 6 to 18 months 

(r=0.64, 95% CI [0.56, 0.71], p=<0.0001) (Figure 4.6B). In our later SBA experiments 

D23580 and 037v4 were used in parallel because it was assumed that serum from older 

children (> 6months) would nearly all be competent to kill Salmonella 049v3. 
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Figure 4. 6: Serum bactericidal activity to various Salmonella serovars 

Log10 change in Salmonella serovars as indicated from baseline condition in serum from 

children at study entry (6 months) Figure 4.6A. The red bars represent the mean. 

Correlation of SBA to S. Typhimurium strain D23580 and 037v4 at 6 months to 18 

months (Figure 4.6B). r represents Pearson correlation coefficient.   

 

In keeping with previously presented data (chapter 3), serum bactericidal activity to both 

S. Typhimurium  strain D2380 and S. Typhimurium  ID 037v4 increased with age from 6 

months to 18 months (Figure 4.7A-B). SBA to D23580 was significantly more inhibitory 

in children at 9 months, 12 months and 18 months compared to 6 months (Mean; 9 

months  -0.96, 95% CI[-1.43, -0.50 ] vs 6 months -0.09, 95% CI[-0.44, 0.24], p=0.003), 

(Mean; 12 months -2.02, 95% CI[-2.41, -1.62] vs 6 months -0.09, 95% CI[-0.44, 0.24], 

p=<0.0001), (Mean; 15 months  -1.76, 95% CI[-2.04, -1.47] vs 6 months -0.09, 95% CI[-
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0.44, 0.24], p=<0.0001), (Mean; 18 months  -1.64, 95% CI[-1.86, -1.41] vs 6 months -

0.09, 95% CI[-0.44, 0.24], p=<0.0001) (Figure 4.7A).   
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Figure 4. 7: Development of Serum bactericidal activity to Salmonella serovars 

Log10 change in S. Typhimurium strain D23580 and 037v4 as indicated from baseline 

condition in serum from children at varying ages in months (Figure 4.7A-B). The red bars 

represent the mean.   

 

SBA to D23580 was also significantly more inhibitory in children at 12 months 

compared to at 9 months (Mean; 12 months -2.02, 95% CI [-2.41, -1.62] vs 9 months -

0.96, 95% CI[-1.43, -0.50 ], p=0.003). Similarly SBA to 037v4 was significantly more 

inhibitory in children at 12 months and 15 months compared to 6 months (Mean; 9 

months  -0.39, 95% CI[-0.89, 0.11] vs 6 months 0.001, 95% CI[-0.40, 0.40], p=0.41), 

(Mean; 12 months  -1.42, 95% CI[-1.93, -0.92] vs 6 months 0.001, 95% CI[-0.40, 0.40], 
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p=0.006) and (Mean; 15 months  -1.91, 95% CI[-2.2, -1.55] vs 6 months 0.001, 95% CI[-

0.40, 0.40], p=<0.001)  (Figure 4.7B). SBA to 037v4 was also significantly more 

inhibitory in children at 12, 15 and 18 months compared to 9 months (Mean; 12 months  -

1.42, 95% CI[-1.93, -0.92] vs 9 months -0.39, 95% CI[-0.89, 0.11] p=0.006),   (Mean; 15 

months -2.12, 95% CI[-2.4, -1.8] vs 9 months -0.39, 95% CI[-0.89, 0.11], p=<0.0001) 

and (Mean; 18 months -2.27, 95% CI[-2.49, -2.0] vs 9 months -0.39, 95% CI[-0.89, 

0.11], p=<0.0001). 

To explore whether SBA to Salmonella is facilitated by natural Salmonella exposure, 

SBA to D23580 and SBA to 037v4 in children exposed to Salmonella were quantitatively 

compared to non-exposed children at 9, 12, 15 and 18 months. SBA to D23580 among 

Salmonella exposed and non-exposed children were similar at 9 months (Median; 

exposed  -0.61, IQR [-3- 1.28] vs non-exposed -1.3, IQR [-2.51- 0.43], p=0.839), 12 

months (Median; exposed  -1.96, IQR [-3.46- 1.1] vs non-exposed -2.1, IQR [-2.51- -

1.52], p=0.81), 15 months of age (Median; exposed  -1.57, IQR [-2.5- -1.3] vs non-

exposed -1.69, IQR [-2.1- -1.3], p=0.61) and 18 months of age (Median; exposed  -1.87, 

IQR [-2.15- -1.36] vs non-exposed -1.74, IQR [-2.2- -1.08], p= 0.61) (Figure 4.8A).  

Similarly, SBA to 037v4 among Salmonella exposed and non-exposed children was also 

similar at 9 months (Median; exposed  0.18, IQR [-1.71- -3.2] vs non-exposed -0.69, IQR 

[-2.07- -0.43], p=0.156), 12 months (Median; exposed  -2.13, IQR [-2.8- 0.8] vs non-

exposed -2.0, IQR [-2.5- 0], p=0.91), 15 months of age (Median; exposed  -2.52, IQR [-3- 

-2.3] vs non-exposed -2.36, IQR [-2.5- -1.25], p=0.126)  and 18 months of age (Median; 

exposed  -2.3, IQR [-2.8- -2.2] vs non-exposed -2.31, IQR [-2.73- -2.04], p=0.66) (Figure 



Salmonella exposure and development of specific immunity  
 

171 
 

4.8B). SBA was observed to vary with age, as some children that had SBA of -1 log10 

change in Salmonella cfu/ml at younger age had lower  SBA  at older age, suggesting 

intra-individual variability of this measurement over time (Figure 4.8C-D). This needs to 

be explored in future.  
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Figure 4. 8: Relationship between Salmonella exposure and serum bactericidal 

activity in children 
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Children serum killing capacity to S. Typhimurium strain D23580 or 037v4 are shown. 

Log10 change in S. Typhimurium strain D23580 or 037v4 cfu/ml from the control 

condition were plotted against varying  ages as indicated  (Figure 4.8A-D), grouped as 

exposed and non-exposed (Figure 4.8A-D), and individual SBA liked with age (Figure 

4.6C-D). The bars represent the median. Child serum that attained of ≥ -1 Log10 change 

in Salmonella cfu/ml was considered ‘protected’. 

 

The relationship between SBA and S. Typhimurium and Salmonella exposure in children 

was further analysed by Chi squared analysis. SBA of ≥ -1 log10 change in Salmonella 

cfu/ml (considered as a surrogate of protective immunity) was used as a cut off. A total of 

229 observations of  SBA to S. Typhimurium  D23580 or 037v4 were made (56 at 6 

months, 48 at 9 months, 36 at 12 months, 43 at  15 months and 46 at 18 months) (Table 

4-D and 4-E). Comparing SBA to both S. Typhimurium D2350 and 037v4  by specific 

age groups (between 6 and 18 months), there was a  trend at 15 months that Salmonella 

exposure is associated with acquisition of potentially protective SBA but this did not 

reach statistical significance  OR 3.04, 95% (0.32, 28.8)
 

(Table 4-D and 4-E). 

Interestingly, acquisition of potentially protective SBA to S. Typhimurium D23580, when 

all observations over the period of 1 year (6-18 months)  were considered, was 3.65 times 

more likely to occur in children who  had  Salmonella detected in stool than  in children 

who had no Salmonella detected, OR 3.65, 95%  CI(1.54, 8.65). Similarly, acquisition of 

potentially protective SBA to S. Typhimurium  037v4 for all observations over the period 

of 1 year  was 4.25 times more likely to occur in children who  had  Salmonella detected 
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in stool than  in children who had no Salmonella detected OR 4.25, 95% CI (1.79, 10). 

Taken together, these findings support the study hypothesis that Salmonella exposure 

within the GIT may facilitate the acquisition of potentially protective SBA to Salmonella 

in children.  

 

Table 4- D: Relationship between SBA to S. Typhimurium strain D23580 and 

Salmonella exposure 

Age  

 

 All 

SBA ≥ -1 

log10 

[%] 

SBA ≥ -1 

log10 

Exposed 

[%] 

SBA ≥ -1 

log10 

Non 

exposed 

[%] 

Exposed vs 

non-exposed 

OR (95% CI) 

6 months 

 

Total 

N=56 

(n/N) 

14 (14/56) 

[25] 

0 (0/0) 

[0] 

14 (14/56) 

 [25] 

ND 

9 months 

 

Total 

N=48 

(n/N) 

25 (25/48) 

[52] 

2 (2/5) 

[40] 

23 (23/43)  

[53] 

0.57 (0.87, 3.82)
 

12 months 

 

Total 

36 (n/N) 

30 (30/36) 

[83] 

5  (5/6) 

[83] 

25 (25/30)  

[83] 

ND
a 

15 months 

 

Total 

  43 (n/N) 

37 (37/43) 

 [86] 

14 (14/15) 

[93] 

23 (23/28) 

 [82] 

3.04 (0.32, 28.8)
 

18 months 

 

Total 

N=46 

(n/N) 

37 (37/46) 

 [80] 

14 (14/16) 

[87] 

23 (23/30) 

[76] 

2.13 (0.38, 11.7)
 

6-18  

months 

 

Total 

N=229 

(n/N) 

143 (143/229) 

[62.4] 

35 (35/42) 

[83.3] 

108 (108/187) 

[57.7] 

3.65 (1.54, 8.65)
 

a
ND refers to not done  
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Table 4- E: Relationship between SBA to S. Typhimurium strain 037v4 and 

Salmonella exposure 

Age  

 

         All 

SBA ≥ -1 log10 

         [%] 

SBA ≥ -1 

log10 

Exposed 

[%] 

SBA ≥ -1 

log10 

Non exposed 

[%] 

Exposed vs 

non-exposed 

OR (95% 

CI) 

6 months 

 

Total 

N=56 

(n/N) 

13 (13/56)  

[23] 

0 (0/0)  

[0] 

13 (13/56) 

[23] 

  ND
a
 

9 months 

 

Total 

N=48 

(n/N) 

17 (17/48)  

[35.4] 

2 (2/5)  

[40] 

15 (15/43) 

[34.8] 

  
1.24 (1.24, 8.2)

 

12 months 

 

Total 

  N=36 

(n/N) 

25 (30/36)  

[69.4] 

4 (4/6)  

[66.6] 

12 (31/30) 

[70] 

  0.85 (0.13, 5.55)
 

15 months 

 

Total 

  43 (n/N) 

37 (37/43)  

[86] 

14 (14/15) [93] 23 (23/28) 

[82] 

  3.04 (0.32,  

28.8)
 

18 months 

 

Total 

N=46 

(n/N) 

44 (44/46)  

[95.6] 

16 (16/16) 

[100] 

28 (28/30) 

[93] 

  ND
a 

6-18  

months 

 

Total 

N=229 

(n/N) 

136 (136/229) 

[59] 

35 (35/42) 

[83.3] 

101 

(101/187) 

[54.7] 

4.25 (1.79, 10)
 

a
ND refers to not done  

 

4.5 DISCUSSION  

This cohort study extends the findings in Chapter 3 that SBA (peaking at 36 months) and 

T cell immunity (peaking at 14 months) to S. Typhimurium are naturally acquired in 

Malawian children. This cohort study has demonstrated that Salmonella exposure within 

the GIT occurs in the first 18 months of life, re-affirming our earlier hypothesis that the 

early acquisition of T cells immunity to Salmonella could be driven, at least in part, by 

exposure to S. Typhimurium. Salmonella exposure within the GIT was associated with 

acquisition of potentially protective SBA to S. Typhimurium in children aged between 6 

and 18 months. However, there were many children who developed serum bactericidal 
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killing without detection of Salmonella exposure, and the time course of SBA acquisition 

in non-exposed children was not different from children who were exposed. It is 

anticipated that there were episodes of Salmonella exposure that were not detected, or 

that other exposures to cross-reacting bacteria also occurred which we did not detect.  

 

In this cohort, 46.8% Salmonella exposure within the GIT of children aged ≤18 months 

was demonstrated, after children were prospectively followed for a period of 12 months 

(from 6 to 18 months of age). These findings are in keeping with a previous report from 

Mexican children that found that were 40% of children were exposed to Salmonella in the 

first year of life (Cravioto, et al., 1990). Enteric pathogens exposure in that study was, 

however, examined at 2 weeks intervals. It is likely that higher than 46.8% Salmonella 

exposure might have been detected in our cohort if shorter time intervals to observe 

Salmonella exposure events were adopted because in some children shedding of 

Salmonella might be of shorter duration (< 4 weeks) than what was anticipated. It was, 

however, previously demonstrated that under-five year-old children, on average, shed 

Salmonella in their stools for as long as 7 weeks (Buchwald & Blaser, 1984). Cross-

sectionally, Salmonella was detected in 4.6% (29/630) of stools tested in Malawian 

children aged 6-18 months. Importantly, among the Salmonella serovars isolated, S. 

Typhimurium was the predominant serovar (52%), followed by non-defined Salmonella 

serovars (31%), S. Typhi (10%) and S. Enteritidis (7%). A cross-sectional  study in 

Blantyre, Malawi found asymptomatic Salmonella carriage in 2.4% (6/251) of children 

aged 0-2 years and 0.8% (1/131)  of  children aged 2-5 years from Ndirande community 
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(Msefula, 2009). This was lower than 4.6% detected in this cohort. The difference in 

magnitude of Salmonella detected in these studies might arise from differences in age 

distribution, from seasonal differences particularly during the wet season when the level 

of enteric pathogens including Salmonella has been reported to be high (Kariuki, et al., 

2006, Gordon, et al., 2008, Morpeth, et al., 2009) and also from methodological 

differences; in this study culture and PCR were used, while culture only was used in 

previous studies.    

 

Salmonella infection occurs through the oral route following ingestion of contaminated 

food, water or contact with contaminated fomites (Kariuki, et al., 2006) and it is possible 

that colonisation of the oropharynx could be immunizing. In this cohort throat swabs 

were examined for Salmonella to describe the pattern of Salmonella exposure within the 

oropharynx. Oropharynx swabs did not yield positive result for Salmonella, even in 

children that had stool culture Salmonella positive result. This was in keeping with a 

previous report that only detected Salmonella in throat swabs of children with acute 

bacteraemia and not asymptomatic children and adults from the communities (Msefula, 

2009). These differences may arise from secondary infection in oral cavity in children 

with Salmonella bacteraemia (Sirsat, 2013) and which could be unlikely in children 

asymptomatically carrying Salmonella within the GIT. This study, however, did not use 

molecular methods to increase the sensitivity of detection from throat swabs. Further 

studies are required to investigate variations in colonization pattern of Salmonella in 

different tissues. 
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Although this cohort of Salmonella exposed children was intended to be a survey of 

asymptomatic children, at the point of the stool being positive for Salmonella (positive 

stool culture), children were more likely to have fever (>37.8º C), and there was a trend 

for them to have a range of non-specific symptoms such as diarrhoea, vomiting or cough, 

at the time of positive stool sample. As previously reported (Bar-Meir, et al., 2005), it is 

possible that these febrile children may have had sub-clinical blood-stream infections, 

which were not detected. Incidence of bacteraemia among children with gastroenteritis 

caused by NTS may range from 3-41% (Meadow, et al., 1985, Bar-Meir, et al., 2005). 

This might suggest that transient or low-level blood stream infection with NTS may be 

common outside of hospital admissions, and this might be important in relation to the 

development immunity.   

 

Among children that had Salmonella in their stool there was a non-statistically significant 

trend that diarrhoea was more likely occur than in children with no Salmonella in their 

stool. Diarrhoea episodes (13% and 26% at current visit and during previous month 

respectively) amongst Salmonella in this cohort may be explained by NTS strains ability 

to trigger pro-inflammatory diarrhoea (Zeng, et al., 2003).  

 

Current or recent malaria infection is commonly associated with S. Typhimurium 

bacteraemia in children from SSA (Graham, et al., 2000, Bronzan, et al., 2007, Biggs, et 

al., 2014). Surprisingly, in this cohort only a few children were diagnosed with malaria 

infection (<1%). Among children that had Salmonella in their stool, there was a non-
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statistically significant trend that they had taken anti-malarial drugs in the previous 

month. However, it is also possible that some children had taken antimalarial drugs as 

syndromic management rather than a confirmed disease. Malaria infection is thought to 

impair phagocyte effector functions and this favours S. Typhimurium to break mucosal 

host immunity and cause bacteraemia (MacLennan, 2012). World Health Organisation 

(WHO) already recommend the prescription of antibiotics, to treat possible non-

diagnosed bacterial blood stream infections [BSI] in children presenting to hospital with 

severe malaria infection (Church & Maitland, 2014). Further studies into malaria and 

Salmonella co-infection are required to understand the biology and provide possible 

immunological or clinical management interventions.  

 

Importantly, in this cohort usage of antibiotics was high (25.9%) compared usage of 

antimalarial drugs (1.4%). Antibiotics are thought to disturb the GIT microbial 

communities and potentially favour Salmonella colonisation as normal flora resistance is 

compromised (Lolekha, 1986, Pavia, et al., 1990, Gradel, et al., 2008, Endt, et al., 2010, 

Kaiser, et al., 2012). Although statistically non-significant, there was a trend that having 

taken recent antibiotics had a higher risk of having Salmonella in stool. Coughing was 

commonly reported clinical presentation in this cohort (22.5%), so it is possible that 

children took these antibiotics to treat cough, a common childhood symptom. Cough is 

known to be a nonspecific symptom of invasive NTS disease among children, and is also 

common in typhoid fever (Graham, et al., 2000, Gordon, et al., 2002, Feasey, et al., 

2012). Alternatively, antibiotic-usage may be an indirect proxy marker for fever from 
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previous malaria, which is also known to be a risk factor for Salmonella disease. Sadly, 

high usage of antibiotics is thought to drive antimicrobial resistance (Lolekha, 1986) and 

could have huge implications in management of bacterial infections using antibiotics, 

particularly in SSA where  resources are also limited.  

 

There have been few studies into factors (i.e. food and water intake, environmental) that 

contribute to Salmonella transmission in this population. As shown before (Kalanda, et 

al., 2006), Malawian babies in this cohort were introduced to supplementary food 

gradually from around 9% at 3 months to 91% by 6 months. A minority of children were 

exclusively being breast fed at 6 months of age (9%). Un-expectedly, maternal breast 

milk lacked bactericidal effect to S. Typhimurium strain D23580 while maternal serum 

robustly inhibited growth of S. Typhimurium strain D23580. Previous reports recognised 

‘protective’ role of breast milk in breast fed children to pathogenic infections including 

Salmonella gastroenteritis (France, et al., 1980, Borgnolo, et al., 1996). In this study, 

levels of antibodies in maternal milk were not quantified and the contribution of 

antibodies to maternal milk bactericidal activity was also not explored. The contribution 

of IgA to complement fixing has been controversial and it is generally agreed that it does 

not efficiently fix complement which is required for killing of invasive S. Typhimurium 

strain D23580 (Michetti, et al., 1992, Roos, et al., 2001, Woof & Kerr, 2006). The level 

of IgG and IgA antibodies specific for Salmonella in maternal milk is not known and this 

needs to be investigated in future. Human breast milk exhibit specific IgG and IgA 

antibodies to pathogens including Haemophilus influenza, Campylobacter jejuni, 
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Helicobacter pylori and Streptococcus pneumoniae (Shapiro, et al., 2007). Human breast 

milk also contains complement (Ogundele, 2001) and has been demonstrated to opsonise 

serum sensitive E. coli strain (Ogundele, 1999, Ogundele, 2000), indicating that it could 

be activated in vivo. Together these findings indicates that breast milk may lack direct 

bactericidal activity against S. Typhimurium strain D23580 and suggest that breast-

feeding might limit Salmonella colonization within the GIT by other mechanisms  such 

as contribution to normal flora colonization resistance by promoting growth of bacteria 

that resist Salmonella invasion and prevention of  Salmonella adherence  to intestinal 

epithelial cells through opsonisation or blocking of Salmonella fimbriae or pili (Weening, 

et al., 2005, Mantis, et al., 2011, Stecher & Hardt, 2011). 

 

Normally water intake begins very early after birth in Malawian children. In this cohort 

most families had access to tap-water (82.7%) but a majority of them were taking non-

boiled water (64.8%). Importantly, among children that had Salmonella in their stool, 

there was a non-statistically significant trend that using non-boiled water contributed to 

being exposed to Salmonella while use of boiled water appeared to prevent Salmonella 

transmission and colonisation. A minority of families were using water from the river 

(4%) or a borehole (11.3%). Using water from the river had 3.9 times higher risk of being 

exposed to Salmonella among children. Borehole and boiled water appeared to reduce or 

prevent Salmonella transmission, but these were not statistically significant. Taken 

together these findings suggest that Salmonella exposure occurred in these children, 

following the introduction of supplementary food, and water sources including tap 
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water(particularly when used non-boiled) or river water might have an important role in 

transmission of Salmonella infection. In the developed world, typhoid cases have 

considerably reduced (Clark, et al., 2010), while in sub-Saharan Africa, Asia and the 

Indian sub-continent typhoid fever remain endemic mainly due to limited access to clean 

water, poor sanitation and poor food hygiene (Crump & Mintz, 2010, Breiman, et al., 

2012) which hugely contribute to Salmonella transmission. Improvements in water, 

sanitation and hygiene could reduce transmission of Salmonella and other enteric 

pathogens these populations.  

 

Observations made on geographical locations of exposed and non-exposed children 

residences seem to suggest that living in close proximity to the river or water stream 

contributed to Salmonella transmission. There was no evidence of statistical difference in 

absolute altitude position of the homes of those exposed to Salmonella and compared to 

those who were non-exposed. It is possible that families living near the river or water 

stream use this water for household chores or also drinking. It has previously been 

demonstrated that residents in lower grounds (low latitudes) are at risk of Salmonella 

infection (Baker, et al., 2011). Waste disposal in Blantyre is fairly good in the 

commercial area and low density areas, but poor in high density areas and among low 

income earners (including Soche Ward) (Kumwenda, et al., 2012, MCI, 2012). In 

Blantyre city, Soche Ward, water taps frequently run dry coupled with high water bills 

(MCI, 2012), some families resort to use of river and stream water. It is not clear whether 

living in close proximity (either by distance or altitude) to the river or water stream might 
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be a risk factor for contracting Salmonella infection. Further investigations including 

more complex, geospatial analyses studies are required, to generate hypotheses 

stimulating future studies aimed at understanding the role of environmental factors 

(including water sources) in the transmission of Salmonella infection in this population.  

 

The ultimate objective of this project was to provide an answer as to whether or not 

Salmonella exposure within the GIT facilitates development of serum immunity. For the 

first time in this population, this cohort study demonstrated 46.8% overall Salmonella 

exposure in Malawian children that were prospectively examined at 1 month intervals 

from 6 to 18 months of age. In keeping with findings in a cross sectional study (chapter 

3), SBA increased with age from 6 months to 18 months. In keeping with the study 

hypothesis, acquisition of potentially protective SBA to S. Typhimurium D23580 and 

037v4 from 6-18 months was 3.65 and 4.25 times more likely to occur in children who 

had Salmonella detected in stool than in children who had no Salmonella detected 

suggesting that Salmonella exposure within the GIT facilitates the acquisition of 

potentially protective SBA to Salmonella in children. However, observations were made 

that children that had no Salmonella detected in their stool also developed SBA to S. 

Typhimurium D23580 and 037v4. This might have arised from suboptimal sensitivity to 

detect all Salmonella exposures, because other exposures to cross-reactive species also 

contribute to protection. Multiple Salmonella exposure events might be required to 

develop potentially protective SBA. This cohort described 24% (7/29) of children that 

were at least exposed twice to Salmonella. A majority of these were exposed twice to S. 
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Typhimurium 71% (5/7). Whether development of potentially protective SBA varies 

following single or multiple exposure events to the same serovar or different serovar is 

the key question to be explored in future. The effect of Salmonella exposure in this study 

was also hindered by the unanticipated and intra-individual variation in SBA at different 

time points and further studies might address this issue.   

 

Summary 

This cohort study revealed that the magnitude of Salmonella exposure within the GIT in 

Malawian children is high in early life (< 18 months of age) when the potentially 

protective SBA is not fully mature. True to this study hypothesis, Salmonella exposure 

within the GIT is associated with acquisition of SBA. Maternal breast milk lacks direct 

bactericidal effect to S. Typhimurium strain D23580. Non-specific clinical features 

including fever, and possibly diarrhoea, vomiting and cough are associated with 

Salmonella exposure events in a small proportion of episodes. Further studies are 

required to determine whether previous administration of antibiotic and recent malaria 

infection and feeding practices including taking river and non-boiled water are possible 

risk factors of Salmonella exposure. These findings underlie the need for a better 

understanding of the relationship between Salmonella exposure within the GIT and the 

development of protective immunity and also Salmonella exposure within the GIT and 

spread into systemic tissues. Public health interventions including improvements in 

sanitary environments, food hygiene and access to clean and safe water are required in 

addition to administration of  a cross protective Salmonella  vaccine in this population.  
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CHAPTER 5: DEVELOPMENT OF T CELL AND ANTIBODY MEDIATED 

IMMUNITY IN RESPONSE TO INVASIVE SALMONELLA INFECTION 

5.1 INTRODUCTION 

Nontyphoidal Salmonella (NTS), principally S. Typhimurium and S. Enteritidis, 

frequently causes bacteraemia in children under 2 years and HIV infected individuals in 

sub-Saharan Africa (SSA)(Graham, et al., 2000, Graham, et al., 2000, Bahwere, et al., 

2001, Berkley, et al., 2005, Gordon & Graham, 2008, Bassat, et al., 2009, Graham, 2010, 

Feasey, et al., 2012). In contrast, S. Typhi typically causes bacteraemia in children older 

than 2 years and adults in Malawi and elsewhere in SSA (Feasey, et al., 2010, Breiman, 

et al., 2012, Lutterloh, et al., 2012). As described in Chapter 1, both NTS and S. Typhi 

isolates from blood are frequently multi-drug resistant in SSA (Kariuki, et al., 2010, 

Lutterloh, et al., 2012). To effectively control Salmonella bacteraemia, a comprehensive 

approach is required, including vaccination and improvements in sanitation and food 

hygiene to prevent new infections and transmission. The rational design of protective 

vaccines requires better understanding of the targets and determinants of naturally 

acquired immunity. 

 

Although its remains poorly defined, humoral immunity appears to constitute a key 

component of protective immunity to both NTS and S. Typhi bacteraemia in children 

from endemic countries (MacLennan, et al., 2008, Pulickal, et al., 2009). CD4+ T helper 

1 (Th1) immunity constitutes another important component of protective immunity 
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against Salmonella (Mastroeni, et al., 1993, MacLennan, et al., 2004). In Chapter 3, we 

show that the development of both CD4+ T cell and SBA immunity to Salmonella in 

healthy children coincides with the decline in cases of NTS bacteraemia, suggesting 

establishment of high level of resistance. 

 

As discussed in Chapter 1, currently they are a number of research groups working on the 

development of an effective vaccine for Salmonella bacteraemia. Pre-clinical work has 

demonstrated that both LPS-O;4,5 (O antigen specific for S. Typhimurium) (Grimont PA. 

D and Weill, Cited 2007) and  LPS-O;9 (O antigens shared by S.Enteritidis and S. Typhi) 

(Grimont PA. D and Weill, Cited 2007) antigens have considerable potential as vaccine 

targets (Colwell, et al., 1984). Pure polysaccharide vaccines induces the generation of 

antibodies which are short-lived (Simon, et al., 2011, MacLennan, 2013), in contrast 

polysaccharide conjugated vaccines induce the generation of  antibodies that are T cell-

dependent and are long-lived (Simon, et al., 2011, MacLennan, 2013). Pre-clinical work 

has also demonstrated that immunisation with outer membrane proteins (OMP) and 

flagellin protein FliC derived from Salmonella induces both T cell and antibody immune 

responses (Udhayakumar & Muthukkaruppan, 1987, Cunningham, et al., 2004, Gil-Cruz, 

et al., 2009, Bobat, et al., 2011). Whether or not these protein vaccine candidates can 

confer superior protection separately (Gil-Cruz, et al., 2009) or covalently linked to O-

antigen as glyco-conjugates (Simon & Levine, 2012) is not clear and is currently being 

investigated. Recently, MacLennan and colleagues adopted a previous described 

Generalised Modules for Membrane Antigens (GMMA) platform for Shigella (Berlanda 
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Scorza, et al., 2012), to generate GMMA from Salmonella (MacLennan, 2013). GMMA 

are outer membrane particles naturally released by Salmonella during growth, and  

contain high amounts of periplasmic and outer membrane protein (MacLennan, 2013). 

This is achieved through the disruption of the Tol-Pal system which leads to an increase 

in rate of GMMA natural release enabling exploitation of GMMA as vaccine candidate 

(Berlanda Scorza, et al., 2012). Generation of GMMA with O antigen (GMMA O+) and 

lacking O antigen (GMMA O-)  involves ultracentrifugation of culture supernatants from 

tolR- and tolR-wabaP-mutants of Salmonella serovar of choice (Berlanda Scorza, et al., 

2012). GMMA have been shown to be highly immunogenic in mice  (MacLennan, 2013) 

but their importance in humans as vaccine candidate has not been evaluated. 

 

It is thought that natural Salmonella bloodstream infection results in  the acquisition of 

effector and memory B and T cells (Mittrucker & Kaufmann, 2000) and Chapter 4 

demonstrates that Salmonella exposure within the GIT facilitate development of 

‘protective’ serum bactericidal activity to invasive NTS strain D23580  in children (6 to 

18 months). In this study, a cohort of children with Salmonella bacteraemia was 

evaluated for immune response to Salmonella specific antigens during the acute phase of 

infection and at 1 month in convalescence. In addition, healthy family members from the 

index cases’ households were recruited for similar immunological investigations. 

Immunity was evaluated ex vivo, using immunological assays including the intracellular-

cytokine staining assay (for detection of Salmonella-specific CD4+ T cells producing 
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IFN-γ) and the B cell ELISpot assay (for detection of Salmonella-specific IgG or IgA 

antibody secreting cells [ASC]).  

 

Hypothesis: Invasive Salmonella infection induces the development of Salmonella 

specific B cell and CD4+ T cell immunity. 

 

Study objectives: 

1. To determine the immunological importance of Salmonella derived proteins; FliC, 

OMP, GMMA O+ and GMMA O- and polysaccharide antigens; LPS O; 4,5 and LPS 

O; 9 as inducers of  B cell and T cell immunity.  

2. To determine whether or not Salmonella bacteraemia primes the development of  

memory CD4+ T cell immunity. 

 

End points:  

1. Measure and compare Salmonella-specific CD4+IFN-γ+ T cells, induced by ex vivo 

stimulation of T cells with Salmonella derived proteins; FliC, OMP, GMMA O+ and 

GMMA O, in a cohort of children with Salmonella bacteraemia at acute phase, 

convalescent  phase (at 1 month) and in healthy family members.  

2. Measure and compare Salmonella-specific IgG and IgA-secreting cells, targeting 

Salmonella derived proteins; FliC, OMP, GMMA O+ and GMMA O-  and 
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polysaccharide antigens; LPS O;4,5 and LPS O;9, in children with Salmonella 

bacteraemia at acute phase and in healthy family members. 

 

5.2 PARTCIPANTS RECRUITMENT AND METHODS 

The methods for this chapter have been described in chapter 2, section 2.4. 

Study participants: Children admitted and diagnosed with Salmonella bacteraemia were 

termed index cases. This project aimed at recruiting equal numbers of children presenting 

with NTS and S. Typhi bacteraemia. Unexpectedly only children with S. Typhi 

bacteraemia were recruited as cases of NTS bacteraemia were rare during the recruitment 

period. Children (aged below 15 years) with Salmonella bacteraemia were recruited 

sequentially.  These children were presenting to QECH with a Gram negative 

bacteraemia which was then confirmed as Salmonella by routine identification as 

described in Chapter 2, section 2.15. These index cases were recruited and blood samples 

drawn within 72 hours of diagnosis for immunological investigations, typically 1-2 days 

after treatment with recommended antibiotics (ceftriaxone and ciprofloxacin) had been 

commenced. From each index case, a convalescent blood sample was collected at 1 

month. Healthy family members (both children and adults) living in the same household 

as index cases were also recruited into the study and blood samples were collected at 

entry. Healthy family members were not age matched with index cases. 
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Antigens used for immunological investigations: All antigens used in this study have 

considerable potential to be used a vaccines and are currently being investigated in pre-

clinical studies. Outer membrane protein (OMP) was generated from S. Typhimurium as 

a rough preparation as previously described (Gil-Cruz, et al., 2009). These OMP are 

thought to cross-react with S. Typhi due to conservation of the OmpC and F dominant 

proteins (Maclennan, et al., 2014). Flagellin protein FliC was generated from S. 

Typhimurium. S. Typhimurium flagellin reacts to anti-Hi antibodies whiles S. Typhi 

reacts to anti-Hd antibodies according to the Kauffman-White scheme (Grimont PA. D 

and Weill, Cited 2007). To what extent S. Typhi and S. Typhimurium FliC cross-react is 

not clear. GMMA O- were generated from mutant S. Typhimurium strain D23580 

(wabaP-mutants) while GMMA O+ was generated from wild type S. Typhimurium strain 

D23580 (MacLennan, et al., 2008). GMMA proteins derived from S. Typhimurium cross-

react with S. Typhi. LPS-O; 4,5 and LPS-O;9 were commercial S. Typhimurium LPS and 

S. Enteritidis LPS respectively (ALEXIS, Biochemicals). In addition S. Enteritidis  LPS-

O;9  cross-reacts with S. Typhi LPS as these share LPS O; 9 antigen (Grimont PA. D and 

Weill, Cited 2007). 

 

5.3 STATISTICAL ANALYSES 

Statistical analyses were performed using GraphPad Prism version 5 (GraphPad 

Software, USA). Percentages of CD4+IFN-γ+ T cells and absolute counts of IgG or IgA 

ASCs were examined for normality of distribution using D’Agostino and Pearson 

omnibus normality test. Non-normally distributed immune responses (T cells and ASCs), 
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groups were compared using Wilcoxon matched paired t test. End point immune response 

for each group, or interquartile range (IQR) were reported, and p value of less than 0.05 

was considered statistically significant. 

 

5.4 RESULTS 

5.4.1 Study participant’s demographics and clinical presentation 

In this cohort study, a total of 20 children were recruited, less than <15 years of age 

(Median; 8 years range [0.8-13.9]) presenting to QECH with S.Typhi bacteraemia. 

Among these index cases, 10/20 (50%) were female. A total of 21 healthy family 

members of index cases (Median; 30 years, range [12-40 years]) were also recruited into 

the study (Table 5-A). Among these healthy family members 20/21 (95.2%) were female. 

About one third (35%) of index cases had diarrhoea at the acute phase (Table 5-A). A 

majority of index cases were vomiting (75%) while coughing was rare (10%) at the acute 

phase. As expected, the family members to index cases were generally asymptomatic 

(Table 5-A). 
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Table 5- A: Study participant’s demographic and clinical characteristics 

 Description Index 
a
 (%) 

n=20
 

Family (%) 

n=21 

Sex Male  10 (50) Male (4.7) 

Median age in years (range) 8 (0.8-13.9) 30 (12-40) 

Median PCV (range) 34 (21-45) ND 
c 

Diarrhoea  7/20 (35) 0/21 (0) 

Vomit  15/20 (75) 2/21 (9.5) 

Cough  2/20 (10) 1/21 (5) 

HIV status 1/20 (5) 4/21 (19) 

MUAC 1 15 (10-23) ND 

Currently breastfeeding 2(10) ND 

Median breast feeding discontinued (range)   24 (11-36) ND 

a
All the 20 index cases recruited had blood culture confirmed S. Typhi result 

  ND refers to not done 

 

5.4.2 High percentage of FliC- and OMP-specific-CD4+IFN-γ+ T cells in  healthy 

family members  

Both FliC and OMP have previously been demonstrated to induce protective immunity in 

mice (Udhayakumar & Muthukkaruppan, 1987, McSorley, et al., 2000, Cunningham, et 

al., 2004) but their importance in humans as markers of antigen-specific memory T cells 

has received limited attention. 
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Figure 5. 1: High percentage of specific- CD4+IFN-γ+ T cells in healthy family 

members 

Percentage of CD4+IFN-γ+ T cells in the peripheral blood among children with 

Salmonella bacteraemia; index cases at acute phase (n=12), at 1 month into recovery 

phase (n=12) and in healthy family members (n=12). Antigen-specific CD4+IFN-γ+ T 

cells were examined using ICS assay, stimulated with Salmonella protein antigens; FliC 

and OMP as indicated (Figure 5.1A-B) and described in Chapter 2. The bars represent the 

median. Groups were compared using Wilcoxon matched paired t test and considered 

significant with p value<0.05. 

 

CD4+ T cells producing IFN-γ were quantified in index cases at the acute phase and 1 

month in recovery phase and also in healthy family members. There was no statistical 

difference between FliC-specific CD4+IFN-γ+ T cells  in index at acute phase cases and  

recovery phase (Median acute 0.021, IQR[0-0.046] vs recovery 0, IQR [0-0.026], 

p=0.078), (Figure 5.1A). OMP-specific CD4+IFN-γ+ T cells were significantly higher in 
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index cases at acute phase compared to recovery phase (Median 0.025, IQR [0.013-

0.039] vs 0, IQR [0-0.012], p=0.006)(Figure 5.1B). 

 

There was no statistical difference in percentage of both FliC-specific and OMP-specific 

CD4+IFN-γ+ T cells between healthy family members and index cases at acute phase;  

FliC (Median family 0.048, IQR [0-0.12] vs acute 0.021, IQR [0-0.046], p=0.46) (Figure 

5.1A), OMP (Median family 0.07, IQR [0.023-0.15] vs acute 0.025, IQR [0.013-0.039], 

p=0.092) (Figure 5.1B). The percentage of both FliC-specific and OMP-specific 

CD4+IFN-γ+ T cells were significantly higher in healthy family members compared to 

index cases at recovery phase, FliC (Median family 0.048, IQR [0-0.12] vs recovery  0, 

IQR [0-0.026], p=0.016) (Figure 5.1A), OMP (Median family 0.07, IQR [0.023-0.15] vs 

recovery 0, IQR [0-0.012], p=0.005) (Figure 5.1B). 

 

5.4.3 LPS-O antigen expression on GMMA elicits robust Salmonella-specific 

CD4+IFN-γ+ T cells 

Generalised Modules for Membrane Antigens (GMMA) are thought to be highly 

immunogenic in mice (MacLennan, 2013). Salmonella derived GMMA antigens are 

generated with or without LPS O antigens. It is not known whether GMMAO+ and 

GMMA O- would elicit different antigen-specific memory T cell responses ex vivo. 

Firstly, GMMA O- specific CD4+IFN-γ+ T cells were quantified in cohort of index cases 

and healthy family members. The percentage of GMMA O- specific CD4+IFN-γ+ T cells 
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were higher during acute phase compared to recovery phase and healthy family members, 

but these did not reach statistical difference (Median acute 0.05, IQR [0.01-0.10] vs 

recovery 0.002, IQR [0-0.07], p=0.51), (Median acute 0.05, IQR [0.01-0.10] vs family 

0.003, IQR [0-0.08], p=0.62) (Figure 5.2A).   

 

Secondly, GMMA O+ specific CD4+IFN-γ+ T cells were quantified in the same cohort 

of index cases and healthy family members. GMMA O+ specific CD4+IFN-γ+ T cells 

were significantly higher in index cases during  acute phase compared to recovery phase 

(Median acute 0.09, IQR [0.03-0.27] vs recovery 0.03, IQR [0-0.12], p=0.018) (Figure 

5.2B). Furthermore, it was observed that healthy family members had higher percentage 

of CD4+IFN-γ+ T cells in GMMA O+ condition compared to GMMA O- condition 

(Figure 5.2A-B), suggesting that LPS O antigen  augmented this T cell immune response. 

Consequently, there was no statistical difference in percentage of  GMMA O+ specific 

CD4+IFN-γ+ T cells between index cases at acute phase and healthy family members 

(Median acute 0.09, IQR [0.03-0.27] vs family 0.14, IQR [0.03-0.31], p=0.7) (Figure 

5.2B).  
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Figure 5. 2: LPS-O antigen expression on GMMA induces highest magnitude of 

antigen CD4+IFN-γ+ cells 

Percentage of CD4+IFN-γ+ T cells in the peripheral blood among children with 

Salmonella bacteraemia; index cases at acute phase (n=12), at 1 month into recovery 

phase (n=12) and in healthy family members (n=12). Antigen-specific CD4+IFN-γ+ T 

cells were examined using ICS assay, stimulated with Salmonella protein antigens 

GMMA O- and GMMA O+ as indicated (Figure 5.2A-B) and described in Chapter 2. 

The bars represent the median. Groups were compared using Wilcoxon matched paired t 

test and considered significant with p value <0.05. 

  

 

5.4.4 IgG and IgA ASC targeting  Salmonella derived proteins and LPS O antigens  

are elevated  during acute phase of Salmonella bacteraemia  

Specific B cells are generated following Salmonella infection (Kantele, et al., 2012). B 

cell immune responses to specific antigen are commonly evaluated using ELISpot assay 
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(which measures antibody secreting cells i.e. effector B cells [plasma blast] or memory B 

cells) and ELISA (measure antibodies secreted in plasma or serum) (House, et al., 2008, 

Kantele, et al., 2012). In this study, Salmonella-specific IgG and IgA antibody secreting 

cells (ASCs) were quantified in the peripheral blood circulation using a B cell ELISpot 

assay described in Chapter 2, section 2.3.6.4. This study, aimed at measuring transient 

effector B cells in the peripheral blood without ex vivo stimulation and IgA and IgG 

ASCs only at acute phase and in healthy family members were examined.  There was no 

statistical difference in absolute counts of IgA-ASC targeting; FliC, OMP, GMMA O- 

and GMMA O+ among index cases were higher  compared to healthy family members; 

FliC (Median  index   44, IQR [7-62.5] vs family  13.5, IQR [1.87-37], p=0.62), OMP 

(Median  index   36, IQR [8.5-38] vs family  14.7, IQR [1.62-35.2], p=0.43), GMMA O- 

(Median  index    30.5, IQR [22-39] vs family  10, IQR [1.12-31.2], p=0.58), GMMA O+ 

(Median  index    34.6, IQR [8-51.5] vs family  8.5, IQR [0.37-19.8], p=0.18) (Figure 

5.3A). In contrast to IgA absolute counts, absolute counts  of IgG-ASC targeting all 

proteins examined (FliC, OMP, GMMA O-  and GMMA O+) were all significantly 

higher in index cases compared to healthy family members;  FliC (Median index 51.5, 

IQR [24.3-105.8] vs family 10.5, IQR [2.68-17.3], p=0.007), OMP (Median index 32, 

IQR [14.6-59.1]  vs family 8.1, IQR [1.37-20], p=0.015), GMMA O- (Median index 55, 

IQR [14.5-104.9] vs 5.5, IQR [1.87-26], p=0.015), and GMMA O+ (Median index 47.4, 

IQR [30.3-111] vs 10, IQR [2.75-17], p=0.007) (Figure 5.3B).  
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Figure 5. 3: IgG and IgA ASC targeting Salmonella derived proteins and LPS O 

antigens are elevated during acute phase of Salmonella bacteraemia   

Number of antigen specific antibody secreting cells (ASC) secreting IgA and IgG among 

children with Salmonella bacteraemia (Index IgA [n=7], IgG [n=8]) and family members 

(IgA [n=6], IgG [n=8]) as indicated (Figure 5.3 A-B). B cell ELISpot plates were coated 

with Salmonella antigens as indicated and described in Chapter 2 (Figure 5.3A-B). The 

bars represent the median. Groups were compared using Wilcoxon matched paired t test 

and considered significant with p value <0.05. 

 

There was no statistical difference in  absolute counts of  IgA-ASC targeting LPS O;9 

and  LPS O;4,5, detected  in index cases compared to  healthy family members; LPS O;9 

(Median index 24, IQR [14-72.5] vs  family 16, IQR [6-81.7], p=0.62), LPS O;4,5 

(Median index 24, IQR [14-73] vs  family 21.2, IQR [5.2-56.3], p=0.62) (Figure 5.3A). 

In contrast to IgA-ASC specific absolute counts, absolute counts of IgG-ASC targeting 
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LPS-O;4,5 and IgG-ASC targeting  LPS O;9 were significantly higher in index cases at 

acute phase compared to healthy family members; LPS O;9 (Median index 58.5, IQR 

[13.2-75.5] vs family 9.8, IQR [4.5-13.3], p=0.015), LPS O; 4,5 (Median index 77.8, IQR 

[21.6-231] vs family 16.6, IQR [3.87-30.5], p=0.007) (Figure 5.3B).  

 

In this project, only children with S. Typhi bacteraemia were recruited. Unexpectedly, the 

absolute counts of IgA-ASC and IgG-ASC targeting LPS-O;4,5 (derived from S. 

Typhimurium) and IgA and IgG-ASC targeting  LPS-O; 9 (derived from S. Enteritidis, 

O9 shared with S. Typhi) were similar in index cases (Figure 5.3 A-B). To explore this 

further, absolute counts of both IgA and IgG ASC targeting LPS O; 9 and LPS O; 4,5 

were linked (Figure 5.4A-B) and found that individual responses were similar (Figure 

5.4A-B). Furthermore, these absolutes counts correlated strongly; IgA ASC targeting 

LPS O; 9 and O; 4, 5 (r=0.76, p=0.03) and IgG-ASC targeting LPS O; 9 and O; 4,5 

(r=0.86, p=0.01). These findings suggest cross-reactivity occurs in antibody responses to 

S. Typhi and S. Typhimurium during infection.  

Taken together, these findings show that IgG-ASC targeting Salmonella derived LPS O 

antigens and proteins are highly elevated during acute phase of Salmonella bacteraemia 

compared to IgA-ASC targeting Salmonella derived LPS O antigens and proteins. IgG-

ASC targeting LPS O antigens specific for S. Typhi and S. Enteritidis appear to cross-

react with S. Typhimurium LPS O antigen, suggesting these might have a broader role in 

controlling Salmonella infection caused by various Salmonella serovars. 
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Figure 5. 4: LPS-O antigen-specific ASC in typhoid patient’s cross-react with O4-

LPS  

Number of antigen specific antibody secreting cells (ASC) secreting IgA and IgG among 

children with Salmonella bacteraemia (Index) (Index IgA [n=7], IgG [n=8]) and healthy 

family members (IgA [n=6], IgG [n=8]). B cell ELISpot plates were coated with 

Salmonella antigens as indicated. Absolute counts were linked (Figure 5.4A-B). 

Correlation of IgA and IgG targeting LPS O;9 and LPS O; 4,5 are shown (Figure 5.4C-

D). r value representing spearman correlation coefficient is shown. 



Immune response to invasive Salmonella infection  
 

200 
 

5.5 DISCUSSION 

The burden of Salmonella bacteraemia caused by NTS and S. Typhi is considerably high 

in SSA (Reddy, et al., 2010, Agnandji, et al., 2011, Breiman, et al., 2012). This requires 

public health interventions including the development of an effective Salmonella vaccine. 

Previous studies in mice, have demonstrated that immunization with Salmonella derived 

proteins such as flagellin and outer membrane protein and polysaccharides such as S. 

Typhimurium LPS O antigen confers protection to virulent Salmonella infection 

(Udhayakumar & Muthukkaruppan, 1987, Simon, et al., 2011). 

 

This study extend these pre-clinical observations in mice by evaluating the importance of  

Salmonella derived FliC, OMP, GMMA O+ and GMMA O-  and LPS O antigens as 

targets of effector B cell immune response and markers of memory CD4+ T cell 

immunity. This study evaluated the importance of these vaccine candidates ex vivo by 

quantifying Salmonella-specific IgG and IgA ASCs and CD4+IFN-γ+ T cells in a cohort 

of children with S. Typhi bacteraemia at acute phase and convalescent phase and in 

healthy family members. Serum IgG antibody immunity constitutes a key component that 

controls Salmonella bacteraemia in humans (MacLennan, et al., 2008, Pulickal, et al., 

2009). Opsonic IgG antibodies targeting LPS O antigen fixes complement to effect serum 

bactericidal activity to NTS and S. Typhi (MacLennan, et al., 2008, Pulickal, et al., 

2009). Although, IgG antibodies targeting LPS O antigen are considered to correlate with 

protection to invasive NTS and S. Typhi bacteraemia, correlates of invasive Salmonella 

protection and the targets of protective antibodies are poorly defined. This  study, show 
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that absolute counts of IgG-ASC targeting FliC, OMP, GMMA O- and GMMA O+ were 

significantly higher in index cases compared to healthy family members. In contrast 

absolute counts of IgA-ASC targeting FliC, OMP, GMMA O- and GMMA O+ were 

higher in index cases compared to healthy family members, but this did not reach 

statistical difference. Previous studies in Bangladesh demonstrated that secretory IgA 

targeting crude membrane proteins (MP) are elevated at acute phase of S. Typhi infected 

patients compared to healthy controls (Sheikh, et al., 2009, Khanam, et al., 2013). It is 

possible that the results from this current study and the Bangladesh studies differ due to 

methods employed (Bangladesh studies measured MP-specific IgA antibodies secreted 

by B cell lymphocytes in supernatants using the ELISA as the readout while the current 

study measured IgA expressed by the ASC using direct ELISpot). Even though both the 

Bangladesh studies and this current study aimed at examining transient B cell responses 

and ex vivo stimulation was not required, it is possible that measuring antibodies in 

lymphocytes supernatants technique is more sensitive compared to direct ELISpot.  

 

These findings may also reflect minimal contribution of IgA immunity in response to S. 

Typhi infection in the peripheral blood compared to IgG immunity. Lee and colleagues 

previously showed that immunized mice lacking IgA or the polymeric Ig receptor 

acquired robust protection against Salmonella infection, suggesting that systemic, rather 

than mucosal, B-cell responses are important for protective immunity to virulent 

Salmonella (Lee, et al.). This is also consistent with previous observations that IgA 

antibodies play a crucial role in primary defence (within the gut mucosa) against enteric 
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pathogens including Salmonella (Griffin & McSorley, 2011) while IgG antibodies are 

crucial for controlling  Salmonella infection in systemic organs (MacLennan, et al., 

2008). Compartmentalisation of IgA ASCs and IgG ASCs following varying routes of 

immunisation including oral and systemic have been reported before (Quiding-Jarbrink, 

et al., 1997), whether this might have important implications in vaccine design and 

administration (oral or parental vaccine) targeting Salmonella is the key question. It 

remains possible that IgA ASCs are important but not detectable peripherally.  

Furthermore, Salmonella-specific IgG are required to fix complement in immune serum, 

and this enables killing of  complement resistant invasive Salmonella strains including S. 

Typhimurium strain D23580 (MacLennan, et al., 2008), while  IgA antibodies  capacity 

to activate complement is poor and the role of IgA in complement mediated killing or  

opsonophagocytosis has been controversial (Michetti, et al., 1992, Roos, et al., 2001, 

Woof & Kerr, 2006).  

 

Despite the fact that this study only examined children with S. Typhi bacteraemia, 

absolute counts of IgG ASC and IgA ASC targeting LPS-O;4,5 (specific for S. 

Typhimurium) and LPS-O; 9 (Shared by S. Enteritidis and S. Typhi) were similar in 

index cases. Furthermore, only absolute counts of IgG ASC targeting LPS-O;4,5 and 

LPS-O; 9 were significantly higher in index cases compared to healthy family members. 

Importantly, these findings suggest that secreted IgG antibodies targeting LPS O; 9 

induced by S. Typhi infection, cross-reacts with S. Typhimurium LPS O: 4, 5 antigen in 

vivo. These findings are in agreement with a previous report (Kantele, et al., 2012). They 
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demonstrated that Ty21a vaccinees and patients with enteric fever had a strong gut-

directed cross-reactive plasma blast response against Salmonella serovars sharing the two 

O-antigens (LPS O; 9, 12) (shared by S. Typhi and S. Enteritidis). They also 

demonstrated a weaker gut-directed cross-reactive plasma blast response against 

Salmonella serovars sharing one (LPS O;12)  with S. Typhi including Typhimurium 

(Kantele, et al., 2012). Whether this cross-reactivity observed ex vivo in our currently and 

the previous study (Kantele, et al., 2012), results in cross-protection to multiple 

Salmonella serovars in vaccinated or naturally infected individuals is the key question.   

For instance, is it possible that oral Ty21a vaccination for typhoid fever can confer 

protection to S. Typhimurium and S. Enteritidis infection? It has  previously been shown  

that attenuated S. Typhi vaccines including Ty21a and CVD 909 induces 

opsonophagocytic functional antibodies in humans that cross-react with S. Paratyphi A 

and S. Paratyphi B (Wahid, et al., 2014). These observations need further studies to 

determine whether or not already licenced vaccines such as oral Ty21a could confer 

protection to NTS and be used in endemic countries. In SSA, Salmonella serovars 

principally; S. Typhi, S. Typhimurium and S. Enteritidis frequently causes bacteraemia in 

children and adults (Reddy, et al., 2010, Agnandji, et al., 2011, Breiman, et al., 2012). A 

vaccine that confers protection to multiple Salmonella serovars would be highly 

desirable.  

 

In recent years protein array and proteomic technology, has been used to determine 

antibody targets and potential diagnostic markers during invasive Salmonella infections 
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in both mice and humans (Lee, et al., Charles, et al., 2010). Current diagnostic tools 

including blood culture and Widal test for Salmonella bacteraemia have had considerable 

setbacks (Khanam, et al., 2013). The significant increase in absolute counts of  IgG ASCs 

targeting  Salmonella derived antigens; FliC, OMP, LPS O;4,5 and LPS O;9 in index 

cases compared to healthy family members suggests that secreted serum IgG antibodies 

targeting these antigens might be valuable as diagnostic marker for S. Typhi infection  in 

endemic countries. But antigens examined in this current study lack specificity between 

NTS and S. Typhi (For instance antibodies targeting LPS O;9 cross-reacts with LPS 

O;4,5, crude preparation of OMP derive from S. Typhimurim cross-reacts with S. 

Typhimurium). Further studies using both protein array and proteomic technology in a 

natural infection study design, are required to determine unique antigens for exploration 

as diagnostic tools. 

 

Both during the early and secondary phases of Salmonella infection, CD4+ T cells 

provide help to monocytes and macrophages to efficiently kill Salmonella through the 

generation of pro-inflammatory cytokines such as IFN-γ and TNF-α (Mastroeni, et al., 

1992, Mastroeni, 2002). A study on Vietnamese typhoid patients showed that S. Typhi 

infection induces a molecular signature that is mainly pro-inflammatory in nature during 

the acute phase (Thompson, et al., 2009). A study on Bangladesh  typhoid patients 

showed that S. Typhi specific-CD4+ T cell immune responses as evidenced by IFN-γ 

production (detected by ELISpot and ICS) and proliferation are increased at acute phase 

and convalescence phase (14-28 days)(Sheikh, et al., 2011). In this cohort of index cases, 
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the proportion of Salmonella-specific CD4+IFN-γ+ T cells was higher during acute phase 

and declined at 1 month in convalescence. This decrease in Salmonella-specific 

CD4+IFN-γ+ T cells observed, contradicts previous reports in typhoid patients, which 

showed that CD4+ T cell immune responses specific S. Typhi proteins expressed in vivo 

during human infection, including StaF, StbB, CsgF, and CsgD, OppA, STY2195, and 

PagC were generally  sustained at convalescent  phase (14-28 days) (Sheikh, et al., 2011, 

Bhuiyan, et al., 2014). The important differences observed between this study and the 

two Bangladesh studies; protein antigens (Bangladesh study panel of purified proteins 

expressed during S. Typhi infection versus proteins express on the surface of S. 

Typhimurium) used to stimulate T cells and the timing for blood sampling particularly 

during the convalescence phase (Bangladesh study 14-28 days versus current study at 1 

month). Whether this decline in specific CD4+ T cells observed a month into the 

recovery period reflects changes in memory CD4+ T cells in systemic circulation or lack 

of establishment of memory CD4+ T cell immunity is not clear. 

 

Perhaps this reduction in specific CD4+ T cell immune responses might result from the 

decrease in effector memory T cells in the systemic circulation as they differentiate into 

central memory T cells and migrate to the secondary lymphoid tissues. In this study 

immunological tool that were used, essentially measures effector CD4+ T cells producing 

IFN-γ specific for Salmonella. A short-term (6 hours stimulation plus CD28/49d co-

stimulation) intracellular cytokine staining assay was used. It may have been possible to 

detect sustained Salmonella-specific CD4+ T cells immune response in the recovery 
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period, if immunological tools that typically measures the central memory CD4+ T cells 

such as proliferations assay were employed (Lundin, et al., 2002, Salerno-Goncalves, et 

al., 2002). Several factors including taking antibiotics and Salmonella mediated immune 

modulation might have a role in the decline of specific CD4+ T cells at 1 month into 

recovery phase. Administration of antibiotics is thought to compromise the development 

of specific memory CD4+ T cell immunity (Griffin, et al., 2009) through a mechanism 

that is not very clear. Through the SPI2 T3SS, Salmonella has the capacity to escape host 

defence by compromising the priming of naïve CD4+ T cells in natural infection. 

Salmonella is thought to exploit development of immune memory by reducing its antigen 

availability, avoiding phagosome-lysosome fusion and down-regulation of T cell receptor 

(Matsui, 1996, Tobar, et al., 2006, Bueno, et al., 2007, Srinivasan & McSorley, 2007).  

It was observed that in healthy family members, the majority of whom  were mothers, the 

percentage of Salmonella specific-CD4+IFN-γ+ T cells were generally higher (in ex vivo 

stimulated T cells with FliC, OMP, GMMA O+) compared to index cases at acute phase. 

These Salmonella-specific CD4+IFN-γ+ T cells reflect presence of memory CD4+ T cell 

mediated immunity in adults in this population. These memory T cells most likely are 

developed as a result of previous Salmonella exposure.  

 

Generalised Modules for Membrane Antigens (GMMA) are thought to be highly 

immunogenic in mice (MacLennan, 2013, Koeberling, et al., 2014). Interestingly, this 

study demonstrated that T cells stimulation with GMMA O- resulted in generation of 
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higher percentage of CD4+IFN-γ+ T cells in index cases during acute phase compared to 

healthy family members. Furthermore, in healthy family members, T cell stimulation 

with GMMA O- resulted in generation of lower percentage of CD4+IFN-γ+ T cells 

compared to T cells stimulation with GMMA O+. The lower percentage of CD4+IFN-γ+ 

T cells in GMMA O- condition among healthy family members can be attributed to lack 

of LPS O antigen. Natural LPS antigen has a profound effect on CD4+ T cell immune 

responses although this has been explored more intensively in mouse models than in 

humans (McAleer & Vella, 2008, Chilton, et al., 2013). LPS stimulates CD4+ T cell 

immune responses through toll like receptor 4 (TLR4). This TLR4 signalling  cause 

APCs to  up-regulate antigen bearing MHC class II chains and co-stimulatory molecules, 

both of which push T cell clonal expansion and  mount specific effector functions in mice 

(McAleer & Vella, 2008). How LPS O antigen in GMMA O+ augments generation of 

Salmonella-specific CD4+IFN-γ+ T cell immune responses needs to be explored in 

humans. 

 

Limitations  

The major limitation of this study was that only children with S. Typhi bloodstream 

infection were recruited although it was planned to recruit children presenting with S. 

Typhi and those presenting with NTS. Recruitment of one group of children suffering 

from NTS and another group presenting with S. Typhi bacteraemia would have offered us 

the opportunity to compare the nature of immunity induced by exposure to either one of 
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these invasive Salmonella serovars. Furthermore, healthy family members that were used 

as healthy controls were mainly adults as compared to the index cases who were children.  

It is very likely that immune responses to Salmonella differ in different age groups. A 

group of age-matched children as controls would have been ideal. All proteins antigens 

used in this study were derived from both wild type and tolR-wabaP mutant (lack LPS O 

antigen) S. Typhimurium strain D23580. All protein antigen preparations (FliC, OMP, 

GMMA O- and GMMA O+) were derived from S. Typhimurium. Some proteins antigens 

derived from S. Typhi would have allowed appropriate comparison. 

 

Summary 

In children with S. Typhi bacteraemia, IgG antibodies targeting S. Typhi LPS O; 9 

antigens were high during  acute infection and appeared to cross-react with S. 

Typhimurium LPS O; 4, 5, suggesting pre-existing S. Typhi  IgG antibodies specific for 

LPS O;9 might have a wider role in controlling S. Typhimurium infections. Further 

studies are required to explore the potential of already licensed vaccines in providing 

protection against nontyphoidal Salmonella serovars including S. Typhimurium and S. 

Enteritidis. Salmonella specific effector memory CD4+ T cells were elevated during the 

acute phase which decreased one month in convalescence. This might have resulted from 

effector CD4+ T cell differentiation to central memory CD4+ T cell and subsequently 

migrate to  secondary lymphoid tissues. In contrast to GMMA O-, LPS O antigen on 

expression GMMA O+ appears to act as an adjuvant and augments the generation of 
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Salmonella-specific CD4+IFN-γ T cells. Clinical studies are required to study the 

immunogenicity induced by Salmonella derived GMMA O+ and GMMA O- as vaccines. 
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CHAPTER 6: Ty21a ORAL TYPHOID VACCINE INDUCED IMMUNITY IN 

THE PERIPHERAL BLOOD AND GUT MUCOSA OF HEALTHY ADULTS 

6.1  INTRODUCTION 

About 21.7 million people worldwide contract typhoid fever annually (Crump, et al., 

2004, Crump & Mintz, 2010). In the developed world, typhoid cases have considerably 

reduced (Clark, et al., 2010), while in sub-Saharan Africa, Asia and the Indian sub-

continent typhoid fever remain endemic mainly due to limited access to clean water, poor 

sanitation and poor food hygiene (Crump & Mintz, 2010, Breiman, et al., 2012). Clinical 

management of typhoid fever is problematic in endemic countries, due to the emergence 

of multi drug resistant (MDR) S. Typhi (Rowe, et al., 1997, Crump & Mintz, 2010, 

Kariuki, et al., 2010, Aggarwal, et al., 2011, Zaki & Karande, 2011). Besides other public 

health interventions such as improvements in sanitation and food hygiene, vaccination for 

typhoid was recommended by world health organization (WHO) as a means to control S. 

Typhi infections since 2008 (WHO, 2008).   

 

As described in Chapter 1, oral Ty21a is a vaccine for  typhoid fever and was generated 

in the 1970s following chemical mutagenesis of the wild type strain S. Typhi Ty2 and 

does not express the Vi polysaccharide and galE gene (Germanier & Fuer, 1975, 

Guzman, et al., 2006). Ty21a (Vivotif) contains attenuated S. Typhi Ty2 in lyophised 

form, and each capsule contains no less than 2x10
9
  viable cells (Guzman, et al., 2006). 

Oral Ty21a vaccine is one of the two currently licensed vaccines for typhoid fever, the 
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other being the Vi polysaccharide (VCP) parenteral vaccine (Germanier & Fuer, 1975, 

Guzman, et al., 2006, Khan, et al., 2010). Both are used mainly by travellers from 

developed world when they visit endemic areas, but may also be used for disease control 

within endemic areas. As discussed in Chapter 1, clinical trials demonstrated that oral 

Ty21a vaccine is extremely safe and well tolerated (Olanratmanee, et al., 1992, Guzman, 

et al., 2006). A meta-analysis of randomised controlled trials demonstrated that Ty21a 

vaccination has three years cumulative protective efficacy of 51% (Fraser, et al., 2007). 

Ty21a vaccine induces both antibody and T cell immune responses (Pasetti, et al., 2011). 

However, the nature of oral Ty21a vaccine-induced antibody and T cell immune 

responses within the gut mucosa has not been directly examined and neither has this 

immune response within the gut mucosa been compared to peripheral blood immune 

responses.  

 

Oral vaccines or enteric pathogens induce immune response within the gut associated 

lymphoid tissues (GALTs) (Pasetti, et al., 2011). Naïve T cells are primed when they 

encounter peptide antigen through local dendritic cells (DC) and imprinted within the 

regional mesenteric lymphoid tissues to express gut mucosa specific trafficking 

molecules including α4β7 and CCR9. Vitamin A (retinol) metabolite retinoic acid (RA) 

has been implicated in imprinting gut mucosa homing molecules such as α4β7 and CCR9 

on T cells (Johansson-Lindbom, et al., 2003, Iwata, et al., 2004). B cells and T cells 

expressing integrin α4β7 interacts with mucosal vascular address in cell adhesion 

molecule 1 (MAdCAM1), which is constitutively expressed on endothelial venules in 
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intestinal lamina propria (LP) and Peyer’s patches (PP) (Berlin, et al., 1993). B cells and 

T cells express chemokine receptor CCR9 and interact with the gut-associated chemokine 

ligand CCL25/TECK (Kunkel, et al., 2000, Iwata, et al., 2004). CCL25 has been 

implicated in trafficking blood lymphocytes into the mucosal epithelial tissues of the gut, 

respiratory and urogenital tracts (Kunkel, et al., 2003). CCR9+ T cells are not found 

within the colon, perhaps due to lack of CCL25 expression in the colon. In contrast, 

CCL28 is expressed by colonic epithelial cells and interacts with CCR10 (Kunkel, et al., 

2003). It is therefore thought that CCR9 promotes B cells and T cells homing within the 

small bowel while CCR10 promotes these lymphocytes homing within the large bowel. 

CD62L is mainly expressed on naïve lymphocytes and facilitates trafficking into the 

secondary lymph nodes (SLN) via high endothelial venules (HEV). Homing to the SLN 

is directed by T cell expression of CD62L which interacts with Gly-CAM-1, CD34 and 

SGL-1 expressed by endothelial cells, and expression of CCR7, which interacts with 

CCL19, CCL21 expressed by the lymph nodes (Streeter, et al., 1988). A majority of 

central memory (CM) T cells express high CD62L and this permits CM T cells to  reside 

within the lymphoid tissues, in contrast effector memory (EM) T cells express low 

CD62L, and  permits these cells to migrate to  infected tissues for antigen-specific 

effector functions (Sallusto, et al., 1999). It has previously been shown, that oral Ty21a 

vaccination induces a peripheral S. Typhi-specific CD4+ and CD8+ T cell immune 

responses and a majority of these peripheral cells express gut homing markers including 

α4β7 and CCR9 (Lundin, et al., 2002, Salerno-Goncalves, et al., 2002). However, what 
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happens at the site of immune induction (the gut mucosa) in humans has not previously 

been addressed. 

This study aimed at modelling natural Salmonella infection induced immune responses 

using oral Ty21a vaccination. A model for natural Salmonella infection and immune 

responses occurring within the gut mucosa and peripheral blood will help to understand 

natural immunizing events that occurs in young children exposed to gut localised NTS 

and invasive NTS disease in SSA. Currently, there is no licenced vaccine for NTS, 

understanding the immunizing events that occur in this model will help to inform the 

design of future NTS vaccine candidates. This model will also help refine the design of 

immunological investigations and tools needed to investigate natural Salmonella 

infection and related immunizing events. Thus to model natural Salmonella infection 

induced immune responses, an interventional study was carried out in healthy adults 

comprising of vaccinated group (received 3 doses of oral Ty21a vaccine) and a control 

group (unvaccinated) and examined T cell immune responses within the peripheral blood 

(at 11 days and 18 days) and gut mucosa (at day 18 only) post-vaccine administration.  

 

Hypothesis: Salmonella infection through the oral route induces the generation of 

specific immune responses within the gut mucosa and by using gut mucosa specific 

homing markers, antigen-specific T cells reflecting mucosal responses can effectively be 

examined non-invasively in the peripheral blood. 

 

Study objectives: 



Vaccine induced immune responses 
 

214 
 

1. To examine and compare oral Ty21a vaccine induced T cell immune responses in the 

peripheral blood and gut mucosa. 

2. To examine the usefulness of gut mucosa homing markers in evaluating these 

antigen-specific immune responses. 

 

Endpoints: 

1. Measure Ty21a specific CD4+ and CD8+ T cells producing IFN-γ, TNF-α and IL-2 

in peripheral blood and gut mucosa of vaccinated and unvaccinated subjects. 

2. Measure Ty21a-specific CD4+ and CD8+ T cells co-expressing gut homing markers 

(β7 and CCR9) producing IFN-γ, TNF-α and IL-2 in peripheral blood of vaccinated 

and unvaccinated subjects. 

 

6.2 PARTICPANTS, MATERIALS AND METHODS  

The methods for this chapter have been described in Chapter 2: study designs, materials, 

and methods, section 2.4. 

Briefly, in this prospective interventional study, a total of 17 healthy adults (Median age 

21 years and range [18-30]) from the UK were recruited. The participants were randomly 

assigned to vaccine and control groups. There were a total of 9 vaccinated (female 55% 

[5/9]) and 8 unvaccinated participants (female 25% [2/8]). Vaccinees were given three 

oral doses of the vaccine. Ty21a (Vivotif) contains attenuated S. Typhi Ty2 in lyophised 

form, and each capsule contains no less than 2x10
9
 viable cells. One capsule was taken 
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on each of days 0, 2 and 4, approximately one hour before a meal, with a cold or 

lukewarm drink, as recommended by the manufacturer and as licensed for use in the UK.  

Blood samples were collected at day 0 (before vaccine administration), day 11 and day 

18 while mucosal specimens were collected only at day 18, at gastroscopy. Salmonella 

specific peripheral and gut mucosal T cell cytokine responses; IFN-γ, IL-2, TNF-α were 

quantified by the intracellular cytokine staining assay. In these experiments peripheral 

blood mononuclear cells and gut mucosal mononuclear cells were stimulated with heat-

inactivated Ty21a at 0.0632µg/ml (Berna Biotech, Switzerland) and influenza (Influenza 

virus vaccine) at 0.225µg/ml (Solvay Biologicals B.V., Netherlands) and SEB at 

100µg/ml (Sigma Aldrich, USA) were used as control stimulants. Peripheral blood 

memory T cell subsets (naïve, central and effector) were quantified by immuno-

phenotyping using CD45RA, and CCR7 markers and T cells homing were quantified by 

immuno-phenotyping using β7, CCR9, and CD62L markers.  

 

6.3 STATISTICAL ANALYSES 

Statistical analyses were performed using GraphPad Prism version 5 (GraphPad 

Software, Inc., USA). Percentages of T cells producing cytokines were examined for 

normality of distribution using D’Agostino and Pearson omnibus normality test. In case 

of normally distributed immune responses, paired groups were compared using two-tailed 

parametric t test. While non-normally distributed immune responses, paired groups were 

compared using Wilcoxon signed ranked test, and non-paired groups were compared 
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using two tailed nonparametric Mann Whitney test. Mean or median and 95% confidence 

intervals (CI) or interquartile range (IQR) for each group immune response were 

reported. A p value of less than 0.05 was considered statistically significant. 

 

6.4 RESULTS 

6.4.1 Peripheral blood Ty21a-specific CD4+/CD8+Cytokine+ T cell responses 

remain un-changed following Ty21a vaccination at day 11 and 18 

In this intervention study, Salmonella-specific CD4+ and CD8+ T cells producing a 

combination of cytokines (addition of cells producing single, double and triple 

combinations of cytokines IFN-γ, TNF-α and IL-2, here termed as Cytokine+) in the 

peripheral blood were quantified  using the intracellular-cytokine staining (ICS) assay as 

described in Chapter 2. CD4+ T cells producing cytokines, for instance IFN-γ, were gated 

as shown in figure 6.1.  
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Figure 6. 1 Gating strategy for detection of CD4+ T cells producing cytokines 

From the CD4+ T cells gate shown (Figure 6.1 top), CD4+ T cells producing IFN-γ were 

defined as CD4+IFN-γ+ (Figure 6.1 top and bottom plots). Representative plots of un-

stimulated condition and Ty21a and SEB stimulated conditions are shown (Figure 6.1 

bottom plots). 

 

There was no evidence of statistical difference in the percentages of Ty21a-specific T cell 

immune responses at day 0 (baseline) comparing the vaccinated and unvaccinated 

subjects (CD4+Cytokine+ T cells, median; 0.062%, IQR [0.015-0.077]  vs 0.02%, IQR 
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[0.016-0.029 ], p=0.31) and (CD8+Cytokine+ T cells, median; 0.05%, IQR [0.002-0.13] 

vs 0.04%, IQR [0-0.11], p=0.8) (Figure 6.2A and 6.3A). 

There was no evidence of statistical difference in the percentages of Ty21a-specific 

CD4+Cytokine+ T cells  and CD8+Cytokine+ T cells  at day 11 and 18 in comparison 

with day 0  in vaccinated subjects (CD4+Cytokine+ T cells, median; 0.062%, IQR 

[0.015-0.077]  at day 0 vs 0.023%, IQR [ 0.019-0.075] at day 11, p=0.87 and 0.02%, IQR 

[0.010-0.058] at day 18, p=0.68) and (CD8+Cytokine+ T cells, median; 0.05%, IQR 

[0.002-0.13] at day 0 vs 0.03%, IQR [0.004-0.065] at day 11, p=0.25 and 0.04%, IQR 

[0.01-0.098] at day 18, p=0.34)  (Figure 6.2A and 6.3A). 
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Figure 6. 2: Percentage of Ty21a-specific CD4+Cytokine+ T cells remain unchanged 

in  

Ty21a vaccinated subjects at day 11 and 18 

Percentage of CD4+ T cells producing a combination of cytokines (addition of single, 

double and triple cytokine producers [IFN-γ, TNF-α and IL-2], here termed as 

Cytokine+) in the peripheral blood among control (unvaccinated) and vaccinated subjects 

as indicated (6.2A-C). Blood was collected from study participants on day 0, 11 and 18 

and PBMCs were stimulated with heat killed Ty21a, Influenza (control) and SEB 

(control) as indicated. Vaccinated subjects at day 0 (n=7), 11 (n=6), and 18 (n=9). 
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Unvaccinated subjects at day 0 (n=7), 11 (n=5) and 18 (n=7). The bars represent the 

median. Group immune responses were compared using Wilcoxon signed ranked test. 

 

There was no statistical difference in the percentages of  Ty21a-specific CD4+Cytokine+ 

T cells  and CD8+Cytokine+ T cells  at day 11 and 18 in comparison with day 0 in 

control (unvaccinated) subjects (CD4+Cytokine+ T cells, median; 0.02%, IQR [0.016-

0.029 ] at day 0 vs  0.02%, IQR [0.010-0.039] at day 11, p=1.0 and 0.01% , IQR [ 0.004-

0.026 ] at day 18, p=0.31) and (CD8+Cytokine+ T cells, median; 0.04%, IQR [0-0.11] at 

day 0 vs 0.03% , IQR [0.023-0.078] at day 11 , p=0.87 and 0.03%, IQR [0.014-0.04] at 

day 18 , p=1.0) respectively  (Figure 6.2A and 6.3A).  
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Figure 6. 3: Percentage of Ty21a-specific CD8+Cytokine+ T cells remain unchanged 

in Ty21a vaccinated subjects at day 11 and 18 

Percentage of CD8+ T cells producing a combination of cytokines (addition of single, 

double and triple cytokine producers [IFN-γ, TNF-α and IL-2], here termed as 

Cytokine+) in the peripheral blood among control and vaccinated subjects as indicated 

(6.3A-C). Blood was collected from study participants on day 0, 11 and 18 and PBMCs 

were stimulated with heat killed Ty21a, Influenza (control) and SEB (control) as 

indicated. Vaccinated subjects at day 0 (n=7), 11 (n=6), and 18 (n=9). Unvaccinated 
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subjects at day 0 (n=7), 11 (n=5) and 18 (n=7). The bars represent the median. Group 

immune responses were compared using Wilcoxon signed ranked test.  

 

In all T cell-stimulated control conditions (influenza and SEB) there was no evidence of 

statistical difference in percentage of CD4+Cytokine+ and CD8+Cytokine+ T cells at day 

11 and 18 in comparison with day 0 in vaccinated subjects; Influenza stimulated 

condition (CD4+Cytokine+, median; 0.19%, IQR [0.11-0.48] at day 0 vs 0.20%, IQR 

[0.10-0.28], at day 11, p=0.87 and 0.19%, IQR [0.087- 0.34] at day 18, p=0.93) and SEB 

stimulated condition (CD4+Cytokine+, median; 4.28%, IQR [2.39-6.14] at day 0 vs 

2.44%, IQR [1.48-4.89] at day 11, p=0.62 and 3.49%, IQR [2.97-5.34] at day 18, 

p=0.81)(Figure 6.2B-C). Influenza stimulated condition (CD8+Cytokine+, median; 

0.05%, IQR [0-0.13] at day 0 vs 0.12%, IQR [0.02-0.24], at day 11, p=0.12 and  0.12%, 

IQR [0.01-0.45] at day 18, p=0.29) and SEB stimulated condition (CD8+Cytokine+, 

median; 2.14%, IQR [1.77-4.02] at day 0 vs 1.96%, IQR [0.73-3.5] at day 11, p=1.0 and 

2.9%, IQR [1.72-4.8] at day 18, p=0.29) (Figure 6.3B-C).   

There was no evidence of statistical difference in percentage of CD4+Cytokine+ and 

CD8+Cytokine+  T cells at day 11 and 18 in comparison with day 0 in control 

(unvaccinated) subjects; Influenza stimulated condition (CD4+Cytokine+, median; 

0.19%, IQR [0.15-0.31] at day 0 vs 0.11%, IQR [0.09-0.18], at day 11, p=0.10  and 

0.20%, IQR [0.13-0.28]at day 18, p= 0.21) and in SEB stimulated condition 

(CD4+Cytokine+, median; 3.79%, IQR [1.52-6.99] at day 0 vs  2.89%, IQR [1.61- 6.99] 

at day 11 p=0.37 and 3.89%, IQR [2.27-4.79] at day 18, p=0.84) (Figure 6.2B-C). In 
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Influenza stimulated condition (CD8+Cytokine+, median; 0.10%, IQR [0.002-0.20] at 

day 0 vs 0.002%, IQR [0-0.04], at day 11, p=0.25  and 0.05%, IQR [0-0.11] at day 18, p= 

0.68) and in SEB stimulated condition (CD8+Cytokine+, median; 4.07%, 95% Cl [3.65-

9.55] at day 0 vs  2.49%, IQR [1.47-3.48] at day 11 p=0.61  and 2.69%, 95% Cl [1.49-

10.12] at day 18, p=0.31) (Figure 6.3B-C). Taken together these findings show that oral 

Ty21a vaccination did not induce an increase in peripheral CD4+ or CD8+ T cell 

immune responses to S. Typhi, detectable at 11 and 18 days post-vaccination. 

 

6.4.2 Effector memory T cells highly express gut mucosal homing marker β7+ and 

CCR9+  

Recently primed T cells within the gut associated lymphoid tissues (GALTs) migrate to 

sites of infection for antigen-specific effector functions, and migrate back to the gut 

mucosa through imprinted homing signature (Kantele, et al., 1999). To investigate this in 

context of Ty21a vaccination, we quantified T cell subsets expressing gut mucosa 

homing markers (β7 and CCR9) and peripheral lymph nodes (PLN) homing marker 

(CD62L) using immunophenotying as described in Chapter 2 and figure 6.4 shows the 

representative gating strategy. 

 

 

 

 

 



Vaccine induced immune responses 
 

224 
 

 

Figure 6. 4: Memory CD4+ T cells and homing marker gating strategy 

From the CD4+ T cell gate (Figure 6.4 top left), memory CD4+ T cells were detected by 

the expression of CD45RA and CCR7. We defined me naïve CD4+ T cells as 

CD45RA+CCR7+, central memory CD4+ T cell as CD45RA-CCR7+ and effector 

memory CD4+ T cells as CD45RA-CCR7- (Figure 6.4 top right). CD4+ T cell subsets 

trafficking properties were characterized by expression of gut homing markers (β7 and 

CCR9) and peripheral lymphoid tissues homing marker CD62L (Figure 6.4 histogram 

plots). To determine the positive population FMO (fluorochrome Minus One) condition 

(FMO condition was stained with the same cocktail of  fluorochrome antibodies as the 

test condition minus the antibody to the  homing marker of interest i.e. anti-CCR9 PerCP 



Vaccine induced immune responses 
 

225 
 

Cy 5.5) was used to set up the cut off line (represented by the black line) for the test 

condition. 

 

There was a higher proportion of total CD8+ T cells expressing β7+ compared to CD4+ T 

cells (Median; CD4+β7+ 51%, IQR [45-57] vs CD8+β7+ 70%, IQR [57.5-77.5]) (Figure 

6.5A). The  proportion of  CD4+ and CD8 T cells expressing CCR9 and CD62L were 

similar (Median; CD4+CCR9+ 28%, IQR [23-31] vs CD8+CCR9+ 32%, IQR [24.5-

34.5]) and (Median; CD4+62L+ 30%, IQR [20.5-63.5] vs CD8+CD62L+ 29%, IQR [20-

44.5]) respectively (Figure 6.5A).  
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Figure 6. 5: Proportion of T cell subsets expressing homing markers   
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Percentage of total CD4+ and CD8+T cells in the peripheral blood imprinted for homing 

to the gut mucosa; CD4+β7+ and CCR9+, and the peripheral lymphoid tissues; CD62L+. 

(Figure 6.5A). Percentage of the total CD4 or CD8 population that were central memory 

(CM) CD4+ or CD8+ T cells (defined as CD45RA-CCR7+), effector memory (EM) 

CD4+ or CD8+ T cells (defined as CD45RA-CCR7-) and naïve CD4+ or CD8+ T cells 

(defined as CD45RA+CCR7+) (Figure 6.5B). Percentage of naïve (Figure 65.C), EM 

(Figure 6.5D), CM (Figure 6.5E) CD4+ or EM CD8 T cells in the peripheral blood 

imprinted for homing to the gut mucosa; CD4+β7+ and CCR9+, and the peripheral 

lymphoid tissues; CD62L+ (Figure 6.5C-E). Figure 6.5A-E, n=9. The bars represent the 

median. 

 

Vaccination or pathogen exposure induces the generation of memory T cells and these 

can ably be distinguished phenotypically (Mackay, et al., 1990, Bunce & Bell, 1997).  

There was a lower percentage of CM CD8+ T cells compared to CM CD4+ T cells 

(Median; CM CD4+ 68%, IQR [51-76] vs CM CD8+ 4%, IQR [3.1-44]) (Figure 6.5B).  

There was a higher percentage of naïve CD8+ T cells compared to  naïve CD4+ T cells 

(Median; Naïve CD4+  16%, IQR [8.1-23] vs naïve CD8+  31%, IQR [16.5-39.5])  while 

the percentage of EM were similar (Median; EM CD4+  16% , IQR [6.3-36.5] vs EM 

CD8+  12%, IQR [9.25-25.5]) (Figure 6.5B).  

 

There were variations in proportions of memory T cells subsets expressing β7+, more 

naïve CD4+ T cells were expressing β7+ (Median; 77% , IQR [74.5-80.5]) followed by 
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EM CD4+ (Median; 72% , IQR [57-86])  and less CM CD4+ T cells were expressing β7+ 

(Median; 37%, IQR [34.5-43]) (Figure 6.5C-E). The proportion of naïve and effector 

memory CD8+ T cells expressing β7+ were similar (naïve CD8+ median; 67%, IQR [61-

73]) and (EM CD8+ median; 69%, IQR [64-82]) and less proportion of CM CD8+ T cells 

were expressing β7+ (Median; 55%, IQR [46-67]). However, the fluorescent intensity of 

β7+ was highest in EM CD4+ T cells followed by CM CD4+ T cells and least expressed 

in naïve CD4+ T cells (Figure 6.6A). The proportion of CD4+ and CD8+ T cells 

expressing CCR9+ was similar in all CD4+ and CD8 T cell subsets examined (Naïve, 

EM and CM) (Figure 6.5C-E). The fluorescent intensity of CCR9+ was highest in EM 

CD4+ T cells while it was similar in CM and naïve CD4+ T cells (Figure 6.6B). As 

expected, the proportion of  CD4+ and CD8+ T cells expression of CD62L was highest in 

naïve T cells (median; naïve CD4+CD62L+88%, IQR [82-97] and naïve 

CD8+CD62L+64%, IQR [37-73]) followed by CM T cells (median; CM 

CD4+CD62L+22%, IQR [17-49] and CM CD8+CD62L+38%, IQR [33-47.5])  and  less 

proportion of  EM T cells were expressing CD62L (median; EM CD4+CD62L+ 7.6%, 

IQR [3.9-21] and EM CD8+CD62L+17%, IQR [9.9-31.5]). The fluorescent intensity of 

CD62L expression was highest in naïve CD4+ T cells, followed by CM CD4+ T cells 

and least expressed by EM CD4+ T cells (Figure 6.6C). Taken together these findings 

indicate that in the peripheral blood, some  EM T cells are imprinted within the gut 

mucosa to  highly express gut homing markers β7+ and CCR9+ and this permits these 

cells to  migrate back  to the  gut mucosal tissues for mounting of effector functions.  
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Figure 6. 6: Heterogeneous expression of homing markers on T cell subsets  

Representative diagram showing expression fluorescent intensity of homing markers 

(β7+ CCR9+ and CD62L) on  CD4+ T cells subsets (naïve, EM, CM). 
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6.4.3 Peripheral blood cytokine producing CD4+β7+ and CD8+β7+ T cells remain 

unaltered following oral Ty21a vaccination   

An approach was then taken, thought to be more sensitive in detecting oral vaccine 

induced T cell immune responses, by quantifying Ty21a-specific T cells expressing gut 

homing markers (Lundin, et al., 2002). There was no statistical difference in percentage 

of Ty21a-specific CD4+β7+Cytokine+ and CD8+β7+Cytokine+  T cells in the peripheral 

blood at day 11, and 18 compared to day 0 in vaccinated subjects (CD4+β7+Cytokine+, 

median; 0.035%, IQR [0.020-0.08] at day 0 vs 0.031%, IQR [0.021-0.092] at day 11, 

p=0.75 and 0.032%, IQR [0.001-0.10] at day 18, p=0.56) and (CD8+β7+Cytokine, 

median; 0.05%, IQR [0.03-0.06] at day 0 vs 0.036%, IQR [0-0.069] at day 11, p=0.25 

and 0.055%, IQR [0.02-0.09] at day 18, p=0.68)(Figure 6.7A and B). 

 

Similarly, there was no statistical difference in percentage of Ty21a-specific 

CD4+CCR9+Cytokine+ and CD8+CCR9+Cytokine+  T cells in the peripheral blood at 

day 11, and 18 compared to day 0 in vaccinated subjects (CD4+CCR9+Cytokine+, 

median; 0.022%, IQR [0.06-0.32] at day 0 vs 0.081%, IQR [0.01-0.23] at day 11, p=1.0 

and 0.045%, IQR [0.01-0.34] at day 18, p=0.84) and (CD8+CCR9+Cytokine+, median; 

0.055%, IQR [0-0.12] at day 0 vs 0.0% , IQR [0-0.04] at day 11, p=0.25  and 0.045%, 

IQR [0-0.13] at day 18, p=0.62) (Figure 6.7C and D). Taken together these findings show 

that oral Ty21a vaccination did not induce an increase in  gut homing CD4+ and CD8+ T 

cell immune responses to S. Typhi, detectable at 11 and 18 days post-vaccination. 
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Figure 6. 7: Peripheral blood cytokine producing CD4+β7+ and CD8+β7+ T cells 

remain unaltered following oral Ty21a vaccination   

Percentage of CD4+β7+ and CD8+ β7+  T cells (Figure 6.7A-B) andCD4+CCR9+ and 

CD8+CCR9+  T cells (Figure 6.7C-D) producing combination of cytokines (addition of 

single, double and triple cytokine producers[IFN-γ, TNF-α and IL-2], here termed as 

Cytokine+) in the peripheral blood among  vaccinated  and unvaccinated subjects as 

indicated. Blood was collected from study participants on day 0, 11 and 18 and PBMCs 

were stimulated with heat killed Ty21a. Vaccinated subjects at day 0 (n=7), 11 (n=5), and 
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18 (n=8). Unvaccinated subjects at day 0 (n=7), 11 (n=5) and 18 (n=7). The bars 

represent the median. Groups were compared using Wilcoxon signed ranked test. 

 

6.4.4 Gut mucosa Ty21a-specific CD4+Cytokine+ and CD8+Cytokine+ T cells 

remain unaltered following oral Ty21a vaccination  at day 18 

Evaluation of oral Ty21a vaccine induced T cell and antibody immune response has 

mainly relied on peripheral blood immunological measurements. Direct measurement of 

oral Ty21a induced immune responses in the gut-mucosa tissue has not previously been 

undertaken. It was hypothesised that direct measurement of oral Ty21a induced immune 

responses within the gut mucosal tissue and might provide more insight than peripheral 

blood measurements because it is possible that some immunizing events occurring within 

the gut mucosa could be missed by using peripheral blood measurements only. Day 18 

was chosen in order to allow time for priming and re-homing events to have occurred. 

Twelve to 15, D2-D3 duodenal single-bite cold biopsies at 20-25cm insertion were 

collected using Boston Scientific large capacity ‘jumbo’ forceps (Boston Scientific, 

USA) which passed through a standard 2.8mm endoscopic biopsy channel. Gut mucosal 

biopsies were collected from all study subjects on day 18 post vaccination. As described 

in chapter 2, mucosal mononuclear cells (MMNCs) isolated were examined for Ty21a 

specific T cell cytokine immune responses. Cytokine responses were examined on viable 

MMMCs using Vivid dye and no less than 90% lymphocytes viability was achieved. 

Contrary to this study hypothesis, there was no statistical difference in percentage of 

Ty21a-specific CD4+Cytokine+ and CD8+Cytokine+ T cells in vaccinated and 
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unvaccinated subjects in the gut mucosa at day 18 (CD4+Cytokine+, median; control 

0.14%, IQR [0-0.41] vs  vaccine 0.08% , IQR [0.002-0.18], p=0.44) and 

(CD8+Cytokine+, median; control 0.039% , IQR [0.02-0.21] vs vaccine 0.022%, IQR [0-

0.08], p=0.39)(Figure 6.8A). It was observed that both influenza and SEB stimulated 

conditions in the gut mucosal performed as expected and immune responses were similar 

in vaccinated and unvaccinated subjects (Figure 6.8B-C). 
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Figure 6. 8:  Gut mucosa cytokine producing CD4+ and CD8+ T cells remain 

unaltered following oral Ty21a vaccination   
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Percentage of CD8+ T cells producing a combination of cytokines (addition of single, 

double and triple cytokine producers [IFN-γ, TNF-α and IL-2], here termed as 

Cytokine+) in the duodenum (gut mucosa) among control (represented by C) and 

vaccinated (represented by V) subjects as indicated (6.8A-C). Gut mucosa biopsy was 

collected from study participants on day 18 after vaccination, and MMNCs were 

stimulated with heat killed Ty21a, Influenza (control) and SEB (control) as indicated. 

Vaccinated subjects CD4+Cytokine+ Ty21a (n=8), Influenza (n=7), and SEB (n=8). 

Vaccinated subjects CD8+Cytokine+ Ty21a (n=8), Influenza (n=8), and SEB (n=8). 

Unvaccinated subjects CD4+Cytokine+ Ty21a (n=5), Influenza (n=6), and SEB (n=6). 

Unvaccinated subjects CD8+Cytokine+ Ty21a (n=6), Influenza (n=6), and SEB (n=6).  

The bars represent the median. Groups were compared using two-tailed nonparametric 

Mann Whitney test. 

 

Taken together these findings suggest that oral Ty21a vaccination does not induce an 

increase in CD4+ and CD8+ T cell immune responses to S. Typhi detectable in the gut 

mucosa and peripheral blood compartments among vaccinated subjects at day 18. 

 

6.5  DISCUSSION 

Currently, assessment of T cell and antibody immune responses induced by oral vaccines 

such as Ty21a or natural Salmonella infection relies on indirect measurements of immune 
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responses, mainly within the peripheral blood. Commonly used immunological tools for 

measurement of T cell immune responses include; intracellular-cytokine staining, 

proliferation, ELISpot (Lundin, et al., 2002, Salerno-Goncalves, et al., 2002) while 

commonly used tools for measurement of antibody production include ELISA and 

ELISpot (Toapanta, et al., 2014). Peripheral blood assessment of antigen-specific 

immune responses induced by oral vaccination or natural Salmonella infection might lead 

to under-appreciation of immunological events, particularly immunizing events occurring 

within the gut mucosa. In this interventional study comprising Ty21a vaccinees and 

unvaccinated subjects natural Salmonella infection was modelled and directly quantified 

Ty21a-specific CD4+Cytokine+ and CD8+Cytokine+ T cells within the gut mucosa and 

indirectly quantified similar T cells in the peripheral blood simultaneously. 

Unexpectedly, in the vaccinated group, peripheral blood Ty21a-specific CD4+Cytokine+ 

and CD8+Cytokine+ T cells were not statistically different at day 11 and day 18 post-

vaccination compared to day 0. This study findings are not in keeping with previous 

reports (Salerno-Goncalves, et al., 2002, Salerno-Goncalves, et al., 2005). 

 

In this study, the proportion of memory T cell subsets were characterised and showed that 

a effector memory CD4+ and CD8+ T cells highly express gut homing marker β7+ and 

CCR9. Observations were made that large proportion of naïve T cells also express gut 

homing markers β7+ and CCR9 and this was in keeping with previously studies (Cose, 

2007). Furthermore, the fluorescent intensity of β7+ and CCR9+ expression of naïve T 

cells was lower compared to EM T cells. This may not mean that naïve and memory  T 
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cells have the same migration pathways to the non-lymphoid tissues (sites of infection) 

since migration is dictated by the density of homing receptor, in this case memory T cells 

are likely to preferentially home to gut mucosal tissue over the naïve T cells (Cose, 

2007).  Previously, it has been demonstrated that a majority of Ty21a-specific CD4+ and 

CD8+ T cells are imprinted for gut mucosa homing, as evidenced by the expression of β7 

(Lundin, et al., 2002), suggesting that evaluation of gut homing T cells might improve the 

sensitivity of detecting antigen-specific T cells. Unexpectedly, using the gut homing 

marker β7 to identify Ty21a-specific cytokine-producing T cells, did not help to delineate 

immunological changes that might have occurred in vaccinated compared to non-

vaccinated subjects. There were no statistical differences in percentage of Ty21a specific-

CD4+β7+Cytokine+ and CD8+β7+Cytokine+ T cells at day 11 and day 18 compared to 

day 0 in vaccinated group. These findings are not consistent with previous reports 

(Lundin, et al., 2002). There were also no statistical differences in percentage of Ty21a 

specific-CD4+CCR9+Cytokine+ and CD8+CCR9+Cytokine+ T cells at day 11 and day 

18 compared to day 0 in the vaccinated group. Furthermore, even with direct assessment 

of gut mucosa immunological measurements, there was no evidence that oral Ty21a 

vaccination induced an increase in  Ty21a-specific CD4+Cytokine+ and CD8+Cytokine+ 

T cell responses in vaccinated subjects compared to non-vaccinated subjects at day 18 

post-vaccination. Why this study found no evidence of increased T cell responses 

following vaccination with Ty21a as previously described elsewhere (Salerno-Goncalves, 

et al., 2002, Salerno-Goncalves, et al., 2005) is the key question. The control stimulated 

condition’s (Influenza and SEB) induced CD4+Cytokine+ and CD8+Cytokine+ T cells 
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responses performed as expected, so there was no evidence that cell isolation and culture 

conditions compromised the ability of cells to produce cytokine responses.  In this study 

heat-inactivated whole-bacterial Ty21a stimulant was used in ICS experiments, it is 

possible that our stimulant could not induce robust stimulation comparable to live 

stimulants used by other groups (Thatte, et al., 1993). It has been demonstrated before 

that whole-cell killed bacteria are less efficient stimulant compared to live whole cell 

bacteria (Thatte, et al., 1993, Nyirenda, et al., 2010). In this study, co-stimulatory 

antibody such as CD28/49d were not used as before (Nyirenda, et al., 2010), and this 

might have increased the ability to detect different responses. Previous studies have 

shown that T cell responses to oral vaccination vary as to when they are evaluated in the 

peripheral blood. Antigen-specific T cell responses such as  CD4+ T helper 1 cytokines 

and proliferation peaks around 7 to 14 days (Lundin, et al., 2002). In this study, timing 

for assessment of antigen-specific responses at day 11 post-vaccination in our 

intervention study was in keeping previous work. Whether assessment at 18 day post-

vaccination might have been late to detect immune response is not clear. Taken together 

these findings and previous reports, it is inconclusive whether or not Ty21a vaccination  

does induce the generation of  Ty21a specific CD4+ and CD8+ T cells both within the 

gut mucosa and peripheral blood. To effectively trouble shoot this lack of T cell immune 

responses following Ty21a vaccination in future investigations a panel of antigen specific 

stimulants will be evaluated to identify the strong stimulant. These experiments will 

include, evaluation of antibody responses S. Typhi using ELISA on existing serum 

samples from this cohort,   comparing live versus heat killed specific antigen, purified 
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antigens versus crude preparations and also determining the optimum stimulation 

concentration of these antigens. A number of immunological tools for assessment of 

antigen specific T cell immune responses will be compared including ICS short term 

stimulation versus long terms stimulation, ICS versus ELISpot and also proliferation 

assays. Optimum time for assessment of T cells responses following Ty21a vaccination 

will also be evaluated in time course experiments, whereby blood specimens from 

vaccinees collected at varying days following vaccination will be compared. Only one 

vaccine batch will be used and the vaccine concentration of live attenuated S. Typhi will 

be verified.   

 

Currently, there is no human vaccine for NTS bacteraemia which is an important public 

health problem in SSA. Young children and HIV infected individuals are more 

susceptible to NTS bacteraemia and non-invasive techniques are required to evaluate 

immunity following natural or vaccine exposure. This model is important for 

understanding immunizing events that occur within the gut following natural NTS 

infection and evaluates immunological tools that could be used to assess immunity 

occurring within the gut and peripheral blood. Gut homing makers including CCR9 and 

β7 can potentially be used non-invasively to evaluate T cell immune responses in 

children and HIV infected individuals naturally infected with NTS. Better understanding 

of natural Salmonella immunizing events within the gut will help in designing an 

effective vaccine for NTS that is urgently required.  
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Summary 

This study has demonstrated that in the peripheral blood, effector memory T cells highly 

express β7, suggesting these T cells migrates back to the gut mucosal for induction of 

antigen-specific immunity. In this study, using gut mucosal measurements and peripheral 

blood measurements including use of gut homing markers, failed to detect a significant 

increase in the percentage of Ty21a specific CD4+Cytokine+ and CD8+Cytokine+ T cell 

immune responses in blood at day 11 and 18 in vaccinees, and Ty21a specific 

CD4+Cytokine+ and CD8+Cytokine+ T cell immune responses at day 18 in gut mucosa 

in vaccinees compared to control subjects. Better immunological methods and 

appropriate study design could help to answer the question whether or not orally induced 

antibody and T cell immune responses occurring within the gut mucosa can be measured 

directly and also whether these responses can be evaluated non-invasively in the 

peripheral blood. Both young children and HIV infected individuals, who are more 

susceptible invasive NTS infection in SSA, will require use of non-invasive 

immunological techniques such as gut homing markers (CCR9 and β7) to evaluate 

immunizing events occurring within the gut mucosa.  
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CHAPTER 7: GENERAL DISCUSSION 

7.1 Introduction 

The research studies presented in this thesis were designed to investigate natural 

acquisition of antibody and T cell immunity to Salmonella in healthy and Salmonella-

infected Malawian children. In healthy adults, in the UK, acquisition of live oral typhoid 

vaccine-induced T cell immunity was investigated to model immunizing events occurring 

with the gut mucosa following natural Salmonella infection. A range of immunological 

tools were used in these investigations including the intra-cellular cytokine staining assay 

(ICS), serum bactericidal activity (SBA) assay, ELISA and ELISpot. Microbiological 

tools including standard stool culture and real-time PCR for detection of Salmonella were 

also used.  

These tools were implemented in several cross-sectional and longitudinal studies. Firstly, 

the development of antibody and T cell immune responses to S. Typhimurium in healthy 

Malawian children aged 0-60 months from Blantyre urban were investigated in a cross-

sectional study. Secondly, the relationship between Salmonella exposure events within 

the gastrointestinal tract (GIT) or oropharynx and development of Salmonella-specific 

serum immunity in healthy Malawian children aged 6-18 months from Blantyre urban 

was investigated in a longitudinal study. Thirdly, the immunological importance of 

vaccine candidates for Salmonella disease were investigated in a cohort of children below 

15 years, presenting to hospital with Salmonella bacteraemia at acute and convalescent 

phases and healthy family members. These vaccine candidates are, currently in pre-



General discussion 
 

241 
 

clinical phase, including Salmonella derived-surface proteins (FliC, OMP and GMMA) 

and lipopolysaccharide (LPS) O antigens. Lastly, antibody and T cell immune responses 

induced by oral Ty21a typhoid vaccination were investigated within the gut mucosa and 

peripheral blood compartments in vaccinated and unvaccinated healthy adults from the 

UK to prospectively model immunizing events occurring with the gut mucosa following 

natural Salmonella infection. 

This discussion focusses on lessons learnt and the implications of the research findings. 

Special emphasis is given to the development of antibody and T cell immunity to 

Salmonella resulting from natural Salmonella infection. Future investigations originating 

from this PhD study are then discussed. 

  

7.2  Review of important findings from thesis 

7.2.1 Development of adaptive immunity to nontyphoidal  Salmonella in Malawian 

children 

The first research study was aimed at characterizing the development of antibody and T 

cell immunity to S. Typhimurium in healthy Malawian children aged 0-60 months. At the 

time this research study idea was conceived, it was known that complement-fixing IgG 

and IgM antibodies to Salmonella play an important role in controlling S. Typhimurium 

bacteraemia. Both IgG and IgM antibody immunity to S. Typhimurium develops with age 

(MacLennan, et al., 2008). How CD4+ T cell immunity to S. Typhimurium develops in 
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Malawian children was not known. It was hypothesized that CD4+ T cell immunity to S. 

Typhimurium develops in parallel with antibody immunity in the first 2 years of life.  

Chapter 3 demonstrates that S. Typhimurium-specific CD4+ T cell immunity is detected 

early in life and reaches a peak at 14 months of age, suggesting early exposure to S. 

Typhimurium or cross-reactive bacteria antigens. In early life (≤ 14 months) S. 

Typhimurium-specific cytokine producing CD4+ T cells correlated positively with the 

anti-S. Typhimurium OMP and FliC IgG antibody titres, thus re-affirming that early 

exposure to Salmonella might be a requirement in the development of this immunity. 

Salmonella infection primarily results from the ingestion of contaminated food, water and 

fomites (Kariuki, et al., 2006). The pattern of Salmonella exposure events within the 

gastrointestinal tract (GIT) in Malawian children had not been investigated.  Salmonella 

exposure within the GIT is thought to be driven by several factors such as breast feeding 

and supplementary feeding practices in childhood, environmental sanitation, food 

hygiene, dosage of the infecting Salmonella bacteria and the frequency of Salmonella 

exposure events (France, et al., 1980, Kariuki, et al., 2006, Bollaerts, et al., 2008, 

Farooqui, et al., 2009). These factors have not been investigated in Malawian children, in 

relation to natural Salmonella. Chapter 3 also demonstrates that S. Typhimurium specific-

CD4+ T cells were lower in older children (24-60 months) in contrast to the younger age 

group (≤ 14 months) suggesting that Salmonella exposure events were low in the older 

children. Furthermore the decline in Salmonella exposure events might indicate 

differentiation of circulating specific-effector memory CD4+ T cells to central memory 

CD4+ T cells which are less readily detectable in the systemic circulation.    
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In agreement with what had previously been shown in Malawian children (MacLennan, 

et al., 2008), Chapter 3 demonstrates that acquisition of serum bactericidal activity (SBA) 

to S. Typhimurium occurs with age. Development of the child’s SBA to S. Typhimurium 

is delayed, and appears to start developing after the decline (in the first 8 months of life) 

of passively acquired maternal SBA. SBA to S. Typhimurium gradually develops from 8 

months of age and peaks at 36 months of age in children aged 0-60 months. Importantly, 

S. Typhimurium-specific SBA correlated with specific IgG antibody titres targeting LPS 

O;4,5 antigen suggesting the importance of this antigen to the development of this 

immunity compared to other protein antigens, including S. Typhimurium derived OMP 

and FliC which were also examined in this study. In contrast to the observation made in 

an earlier study where serum from HIV infected adults had impaired SBA to S. 

Typhimurium (MacLennan, et al., 2010), Chapter 3, shows that older children had robust 

SBA to S. Typhimurium. Lack of SBA to S. Typhimurium in HIV infected individuals 

has been attributed to high concentration of IgG antibodies targeting S. Typhimurium 

LPS O antigen and these appear to block bactericidal antibodies targeting S. 

Typhimurium OMP antigen (MacLennan, et al., 2010, Trebicka, et al., 2013). 

The variation in T cell and SBA immunity to S. Typhimurium, in relation to frequency of 

S. Typhimurium bacteraemia in the same population and age group were evaluated. As 

demonstrated before (MacLennan, et al., 2008), Chapter 3 demonstrates that S. 

Typhimurium bacteraemia in under-five children most frequently occurs in the first 2 

years of life (80%) and the median age was 13 months. Observations were made that 

even though S. Typhimurium-specific CD4+Cytokine+ T cells were acquired early in  
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life, T cells alone appeared not to sufficiently control S. Typhimurium bacteraemia but 

sequential acquisition of SBA to S. Typhimurium was associated with a decline of 

bacteraemia cases. These findings are in agreement with the proposed hypothesis on how 

mice control systemic salmonellosis (Mastroeni, 2002), which suggests that high level of 

immune resistance to Salmonella infection is established in a step-wise fashion and 

involves both innate and adaptive immunity. 

 

It is likely that the early development of T cell mediated response specific for S. 

Typhimurium protein antigens, and subsequent cognate interactions with B cells, promote 

antibody production against S. Typhimurium antigens, class-switching, affinity 

maturation and memory formation (Mohr, et al., 2010). In view of the potentially 

complex nature of Salmonella antigen presentation during natural infection, it is possible 

that CD4+ T cells promote B cell immunity through a bystander (hapten-carrier) effect to 

B cells specific for S. Typhimurium-LPS. LPS alone is a T cell independent type 2 

antigen, but when taken up by antigen presenting cells (APC) in combination with S. 

Typhimurium proteins, it has the potential to elicit  the same response that 

polysaccharide-conjugate vaccines trigger and generate isotype-switched memory B-cell 

immunity (Mitchison, 1971). 

Given the burden of invasive NTS disease in SSA (Reddy, et al., 2010, Agnandji, et al., 

2011), a vaccine is urgently required. S. Typhimurium LPS O-antigen has considerable 

potential as a vaccine target and there are currently several groups developing conjugate 
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vaccines for this purpose to overcome the short-lived T-independent antibody response 

generated by polysaccharide alone (MacLennan, 2013). Immunization with S. 

Typhimurium-OMP and Typhimurium-FliC induce both T cells and antibodies in mice, 

and are therefore also being investigated as vaccine candidates, either separately (Gil-

Cruz, et al., 2009) or covalently linked to O-antigen as glycoconjugates (Simon & 

Levine, 2012).  

Key immunological questions arising from this component of the thesis:  

 When is the appropriate time for administration of a cross-protective Salmonella 

vaccine? 

 What are antibody targets for both gut localised and systemic Salmonella 

infection? 

 

7.2.2 Salmonella exposure and development of specific  immunity in Malawian 

children 

The second research study was aimed at characterizing the relationship between 

Salmonella exposure events within the GIT or oropharynx and development of 

Salmonella-specific serum immunity in Malawian children aged 6-18 months. At the time 

this study idea was conceived, observations were made (Chapter 3) that CD4+Cytokine+ 

T cells to S. Typhimurium in Malawian children were detected early in life peaking at 14 

months of age, suggesting that Malawian children are exposed to Salmonella or cross-
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reactive bacteria in early life. Furthermore the pattern of Salmonella exposure within the 

GIT in Malawian children was not known, when this study idea was conceived. It was 

hypothesized that Salmonella exposure within the GIT/or oropharynx facilitate the 

acquisition of Salmonella-specific serum immunity in Malawian children. In a cohort 

study, healthy Malawian children aged 6-18 months, were tested for Salmonella exposure 

within the GIT and oropharynx by standard culture and rt-PCR at 1 month intervals and 

also quantified serum immunity to S. Typhimurium at 3 months intervals. 

Chapter 4 demonstrates that a total of 29 Salmonella positive stool out of 630 stool 

specimens, representing 4.6% were made. Furthermore, in this cohort, 46.8% (22/47) of 

children had at least one Salmonella exposure event within the GIT over a period of 1 

year. A total of 29 Salmonella positive stools were detected by culture or PCR.  

Salmonellae isolates were principally S. Typhimurium 51.7% (15/29), followed by non-

defined serovars 31% (9/29), S. Typhi 10.3% (3/29) and S. Enteritidis 7% (2/29). Chapter 

4 demonstrates that some children had at least two Salmonella positive stool events by 

culture or PCR, 24% (7/29). 71% (5/7) of these were exposed to the same serovar S. 

Typhimurium. These findings indicate that Salmonella exposure events within the GIT in 

Malawian children are common and this underlines the need of public health 

interventions including improvements in sanitation, food hygiene and vaccination. 

 

Observations were made that S. Typhimurium was the most commonly isolated 

Salmonella serovar from stool. S. Typhimurium is among the most frequent causes of 
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blood stream infection (BSI) in children <2 years of age (Chapter 3). S. Typhimurium 

isolates from blood in SSA are distinct from those isolated in the developed countries and 

are typically multi sequences locus type (MSLT) ST313 (Kingsley, et al., 2009). They 

are multi-drug resistant (MDR), possess a degraded genome, and initial speculation 

suggested they might be human host restricted (Kingsley, et al., 2009). Recently, 

however, another study demonstrated that ST313 can also cause severe and rapid 

invasive disease in chickens (Parsons, et al., 2013). The question as to whether 

transmission of ST313 S. Typhimurium strains occurs from human to human or animals 

to human remains unanswered. In murine  models, S. Typhimurium strain D23580 more  

efficiently spread to systemic organs from mesenteric lymph nodes compared to S. 

Typhimurium strain A130 (pre 2002 strain) (Msefula, 2009).  

Whether these S. Typhimurium isolates (isolated in this cohort) from stool are 

phenotypically and genetically similar to S. Typhimurium (ST313) isolates causing 

bacteraemia in SSA is the key question and will be addressed by whole genome 

sequencing and other studies in future investigations. Furthermore, the predominance of 

S. Typhimurium isolates in this cohort, is consistent with the hypothesis stated in Chapter 

3 that the early acquisition of CD4+ T cell immunity to S. Typhimurium might be driven 

by exposure to S. Typhimurium or cross-reactive bacteria within the GIT.  

 

Several factors might contribute to Salmonella exposure in Malawian children including 

feeding practices, food hygiene and sanitary environment. As previously demonstrated 
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(Kalanda, et al., 2006, Kerr, et al., 2007), and Chapter 4 shows that 9% of children were 

introduced to supplementary food (such as porridge) as early as <3 months of age, and 

91% were introduced to supplementary food by 6 months of age. At 6 months of age all 

children were being breastfed and only 9% were exclusively breastfeeding. Furthermore, 

only 17% of children had discontinued breast feeding by 18 months of age. Chapter 4 

also demonstrates that a majority of families (82.7%), had access to tap water (classified 

as protected source) but 64% of babies were drinking non-boiled water as reported by 

their parents/guardians. Observations were made that boiling water for drinking and using 

water from the borehole appeared to reduce transmission of Salmonella, although these 

findings did not reach statistical significance. Even though, a majority of families  had 

access to tap water, frequent water outages and high utility bills might be a barrier for this 

population access to tap water (MCI, 2012) and some might resort to using water from 

the nearby river or water stream for house hold chores.   

Rivers and water streams in Blantyre city have been shown to be highly polluted and also 

contaminated with potential pathogen   (Kumwenda, et al., 2012, MCI, 2012). Children 

that had Salmonella exposure detected in their stool, appeared to be living  in close 

proximity to the river or water streams (Chapter 4), suggesting that access to the river or 

water streams might contribute to transmission of  Salmonella in these children. The 

contribution of environmental factors in the transmission of Salmonella infection 

(including water sources) in this population is not known. Using water from the river was 

a significant risk factor for transmission of Salmonella in this cohort (Chapter 4). It has 

previously been demonstrated that residents in lower grounds (low altitudes) are at risk of 
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Salmonella infection (Baker, et al., 2011). In this cohort among children exposed to 

Salmonella and non-exposed, absolute altitude of location of residence did not reach 

statistical significance. Further investigations including more complex, geospatial 

analyses studies are required, to generate hypotheses stimulating future studies aimed at 

understanding the role of environmental factors (including water sources) in the 

transmission of Salmonella infection in this population. 

 

Malaria infection was uncommonly detected in this cohort at the current study specific 

visit 0.9% (5/563) and administration of antimalarial drugs in the previous months was 

only reported in 1.4% (8/563). This was surprising considering that Malawi is among the 

malaria endemic countries (Mathanga, et al., 2012), with asymptomatic parasitaemia 

rates ranging between 11.2-18.5% (Roca-Feltrer, et al., 2012). In Blantyre, the 

Plasmodium falciparum parasite rate for children 2-<10 years is the lowest in Malawi 

(26%) (Bennett, et al., 2013). Despite this observation, there was a trend that did not 

reach statistical significance that children that had taken antimalarial drugs were at higher 

risk of being exposed to Salmonella. Studies in mice models have demonstrated that 

malaria infection compromises neutrophil immunity and favours Salmonella to spread 

into the blood stream (Roux, et al., 2010, Cunnington, et al., 2012, Maclennan, 2014). 

Case fatality among children presenting to hospital with malaria and Salmonella BSI or 

any other BSI co-infection is higher compared to children that present with malaria 

infection alone (Bassat, et al., 2009). Most children with malaria and BSI co-infection are 

diagnosed and treated for malaria infection but BSI including Salmonella bacteraemia 
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remains non-diagnosed and un-treated. These critical observations in SSA, made WHO 

recommend that all children with severe malaria should be treated with antibiotics in 

addition to anti-malarial drugs (Brent, et al., 2006). There is need to study malaria and 

Salmonella co-infection in this population to inform the current clinical management 

guidelines. 

 

In keeping with the hypothesis made in Chapter 4, that Salmonella exposure within the 

gut facilitates acquisition of serum immunity in children, there was evidence that 

Salmonella exposure within the GIT associated with acquisition of ‘protective’ SBA to S. 

Typhimurium strain D23580 and 037v4 over a period of 1 year (6 to 18 months). As 

demonstrated by a previous study in Malawian children (MacLennan, et al., 2008), 

Chapter 4 also showed that serum bactericidal activity to S. Typhimurium strain D23580 

increased with age. It was further observed that serum bactericidal activity developed in 

children in whom Salmonella exposure was not detected, and this was in a similar pattern 

as the exposed counterparts. This study could not be certain if exposed and non-exposed 

children were appropriately grouped considering low sensitivity of Salmonella detection 

techniques employed and Salmonella exposure observations at 1 month interval, and it is 

also not clear whether cross-reactive enteric bacteria also facilitate serum bactericidal 

activity acquisition. Whether natural IgG antibodies (Michael, et al., 1962), which also 

develops with age, can fix-complement and facilitate serum bactericidal activity to S. 

Typhimurium strain D23580 is not clear. Taken together these findings suggest that there 
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is a relationship between Salmonella exposure events occurring within the GIT and 

development of SBA.  

 

Maternal breast milk capacity to kill S. Typhimurium strain D23580 ex vivo was also 

explored in Chapter 4. The hypothesis was made that maternal breast milk kills 

Salmonella ex vivo and might indicate that breast milk provides resistance to Salmonella 

colonisation within the gut lumen among breast fed children. Contrary to this hypothesis, 

maternal breast milk could not kill S. Typhimurium strain D23580 ex vivo. Whether or 

not lack of direct maternal breast milk bactericidal activity to S. Typhimurium strain 

D23580 ex vivo could also be true with other Salmonella serovars and other enteric 

pathogens is not clear. The general view is that breast feeding has considerable benefits 

to babies including protection to enteric pathogens such as Salmonella (France, et al., 

1980, Borgnolo, et al., 1996). It is possible that these findings do not necessary contradict 

these observation but this resistance to breast milk killing might be specific for S. 

Typhimurium strain D23580. S. Typhimurium strain D23580 is resistant to complement 

killing alone, and susceptible to IgG antibody fixed complement (MacLennan, et al., 

2008). Whether or not maternal breast milk antibodies (including IgG and IgA) fixes 

complement is not clear. Secretory IgA is more abundant in maternal breast milk and 

poorly activates complement (Michetti, et al., 1992, Roos, et al., 2001, Woof & Kerr, 

2006). A number of factors contribute to maternal breast milk bacterial resistance 

including complement, lysozymes and free fatty acid (Ogundele, 1999). But it appears all 

this did not make substantial contribution in maternal breast milk killing assay. Taken 



General discussion 
 

252 
 

together these findings suggest that in vivo maternal breast milk alone might not be 

sufficient to control S. Typhimurium colonisation within the GIT, in breast fed babies. 

Key immunological questions arising from this component of the thesis:  

 What is the relationship between natural Salmonella exposure within the gut and 

the development of protective immunity from gut localised and blood stream 

Salmonella infection? 

 What is the relationship between gut microbial flora changes and Salmonella 

exposure within the gut lumen?  

 How do malaria parasites predispose children to either or both gut and systemic 

Salmonella infection?
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7.2.3 Development of T cell and antibody immunity  in response to invasive 

Salmonella infection  

The third research study was aimed at determining the immunological importance of 

vaccine candidates, currently in pre-clinical phase, including Salmonella derived-surface 

proteins (FliC, OMP and GMMA) and LPS O antigens. The development of Salmonella-

specific antibody secreting cells (ASC) and T cells induced by invasive Salmonella 

infection (Salmonella bacteraemia) has not been investigated in Malawian children. It 

was hypothesized that invasive Salmonella infection facilitates the acquisition of ASCs 

and T cells. The frequency of IgG or IgA ASCs and T cells specific for Salmonella was 

evaluated in a cohort of children, presenting to hospital with Salmonella bacteraemia at 

acute and convalescent phases and healthy family members. 

 

Chapter 5 demonstrates that absolute IgG ASCs targeting Salmonella derived proteins 

(FliC, OMP, GMMA O+, GMMA O-) and polysaccharides (LPS O; 4,5 and LPS O; 9) 

were significantly increased in index cases compared to healthy family members. In 

contrast absolute IgA ASCs targeting Salmonella derived proteins (FliC, OMP, GMMA 

O+, GMMA O-) were higher in index cases compared to healthy family members 

although the difference did not reach statistically significance suggesting that IgG 

contribution to controlling Salmonella bacteraemia in the peripheral blood might be more 

compared to IgA. IgA antibodies constitute a key immune component that provides 
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primary immune defence to pathogens including Salmonella within the gut mucosa 

(Hapfelmeier, et al., 2010). 

Chapter 5 also showed that Salmonella-specific CD4+IFN-γ+ T cells were higher at acute 

phase compared to 1 month into recovery period. This decline in Salmonella specific 

CD4+ T cells might result from differentiation of effector CD4+ T cells into central 

memory CD4+ T cells which end up being recruited in the secondary lymphoid tissues 

(Sallusto, et al., 1999, Campbell, et al., 2001). This decline may also reflect 

compromised development of Salmonella specific T cell memory. A number of factors 

have been proposed to explain compromised development of Salmonella specific T cell 

memory, including administration of antibiotics and Salmonella immune escape 

mechanisms. Antibiotic administration has been implicated to compromise establishment 

of memory T cells (Griffin, et al., 2009, Endt, et al., 2012). In this study, children with S. 

Typhi bacteraemia were treated with ceftriaxone and ciprofloxacin. Whether or not this 

treatment regimen compromises development of memory T cells is not known. 

Salmonella has also the capacity to modulate immune responses and compromise 

development of memory T cells. For instance in mice, Salmonella compromise dendritic 

cells antigen presentation to T cells, down regulates T cell receptor expression, and 

Salmonella derived LPS and proteins are thought to be immune suppressive (Matsui, 

1996, Tobar, et al., 2006, Bueno, et al., 2007, Srinivasan & McSorley, 2007). In humans 

the mechanisms that Salmonella uses to compromise the acquisition of memory T cells 

have not been explicitly investigated particularly during the course of Salmonella 

bacteraemia disease.  
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T cells stimulation with Salmonella derived GMMA O+ induced robust CD4+IFN-γ+ T 

cells responses in index cases and family members compared to T cells stimulation with 

Salmonella derived GMMA O-. These findings suggested that expression of LPS O 

antigen on GMMA acted as adjunct and augmented the generation of Salmonella specific 

CD4+IFN-γ+ T cells. In mice LPS is thought to a have profound effect on CD4+ T cell 

responses through LPS interaction with APC toll like receptor 4, which results in up-

regulation of downstream signals including MHC-II expression (McAleer & Vella, 

2008). In pre-clinical phase it has been demonstrated that GMMA is highly immunogenic 

(MacLennan, 2013, Koeberling, et al., 2014). A clinical study is required to investigate 

the immunogenicity induced by Salmonella derived GMMA vaccination.  

Key immunological questions arising from this component of the thesis:  

 What immunological tests can be used to evaluate Ty21a vaccine induced 

protective immunity to nontyphoidal Salmonella serovars? 

 How can better serological tests be developed to study Salmonella epidemiology 

in sub Saharan Africa? 
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7.2.4 Ty21a oral typhoid vaccine induced  immunity in the gut mucosa and 

peripheral blood of healthy adults 

The fourth research study was aimed at evaluating antibody and T cell immune responses 

induced by Ty21a oral typhoid vaccine within the gut mucosa and the peripheral blood in 

healthy adults from the United Kingdom. This study aimed to model natural Salmonella 

immunizing events occurring within the gut mucosa compartment, by prospectively using 

a defined exposure. A model for natural Salmonella infection will help to understand 

natural immunizing events that occurs in young children exposed to gut localised NTS 

and invasive NTS disease in SSA. Currently, there is no licenced vaccine for NTS, 

understanding the immunizing events that occur in this model will help to inform the 

design of future NTS vaccine candidates. Oral Ty21a oral typhoid vaccine was licensed 

in the 1980s and yet immune responses induced by this vaccine have not been directly 

examined within the gut mucosa and compared to peripheral blood immune responses. 

Whether the current practice of measuring immunity induced by oral vaccines such as 

Ty21a within the peripheral blood alone sufficiently characterizes the immunizing events 

within the gut mucosa is not clear. It has been demonstrated previously that Ty21a 

vaccination  induces the generation of both T cell and antibody immunity and this  

vaccine is  safe, well tolerated and confers up to three years cumulative efficacy of 51% 

(Olanratmanee, et al., 1992, Fraser, et al., 2007, Pasetti, et al., 2011). 

T lymphocytes trafficking markers particularly those of the gut mucosa including β7 and 

CCR9 were used to extrapolate cellular immune responses occurring within the gut 

mucosa. A majority of effector memory T cells highly express the β7 and CCR9 
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compared to central memory CD4+ T cells and naïve T cells, suggesting Salmonella 

specific CD4+ T cells primed within the GALT migrate back to the gut mucosa for 

mounting of effector immune responses. A majority of central memory CD4+ T cells and 

naïve CD4+ T cells express CD62L. These are in keeping with previous reports (Sallusto, 

et al., 1999), expression of CD62L by  the central memory CD4+ T cells  allows them to 

reside within the secondary lymphoid tissues (SLT) while naïve CD4+ T cell are also 

able to home to SLT for antigen specific priming.  

Vaccination with Ty21a did not induce an increase in production of Ty21a specific-

CD4+Cytokine+ and CD8+Cytokine+T cells at day 11 and 18 post-vaccination in the 

peripheral blood. These findings are not consistent with previous reports (Salerno-

Goncalves, et al., 2002, Salerno-Goncalves, et al., 2005). Evaluation of gut mucosa 

induced immune responses by examining Ty21a-specific T cell immune responses co-

expressing gut homing markers β7 or CCR9 in the peripheral blood, also showed that 

vaccination with Ty21a did not induce an increase in production of Ty21a-specific 

CD4+β7+/CCR9+Cytokine+ and CD8+β7+/CCR9+Cytokine+T cells at day 11 and 18 

post-vaccination. Even with direct evaluation of  gut mucosa of immune responses,  

vaccination with Ty21a did not induce an increase in production of Ty21a-specific 

CD4+Cytokine+ and CD8+Cytokine+T cells at day 18 post-vaccination. The reason why 

this study did not detect differences in the magnitude of Ty21a-specific CD4+Cytokine+ 

and CD8+Cytokine T cells in peripheral blood and gut mucosa is the key question. A 

number of factors might have contributed to this outcome including poor antigen 

stimulation and inappropriate timing for blood and duodenum biopsy collection and not 
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ideal immunological tools. Due to lack of difference in magnitude of  CD4+ and CD8+ T 

cell immune responses in the gut mucosa and peripheral blood, this study failed to 

demonstrate relevance of using either direct (gut mucosa biopsy) or indirect (peripheral 

blood) assessment of oral Ty21a induced immune responses. Better methods and 

materials  including strong T cells stimulant, assessment of both effector and  central 

memory T cell responses and  appropriate timing for sampling and measurements will 

help to appropriately compare peripheral blood and gut mucosa immune responses 

induced by oral vaccination in future investigations. Gut homing makers including CCR9 

and β7 can potentially be used non-invasively evaluate T cell and B cell immune 

responses in children and HIV infected individuals infected with NTS. Better 

understanding of natural Salmonella immunizing events within the gut will help in 

designing an effective vaccine for NTS that is urgently required in SSA.  

Key immunological questions arising from this component of the thesis:  

 What is the relationship between gut mucosa and peripheral blood B cell and T 

cell immunity to Salmonella infection? 
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7.3  Future  investigations 

7.3.1 Development of adaptive immunity to nontyphoidal  Salmonella  in 

Malawian children 

In healthy Malawian children the development of antibodies and T cells to S. 

Typhimurium was somehow linked to age distribution or frequency of S. Typhimurium 

bacteraemia in under-five children. The study showed the age group as to when children 

are more vulnerable to S. Typhimurium bacteraemia. This was evidenced by lack of 

either CD4+ T cell or antibody immunity in a specific age group. Among under-five 

children, 80% of cases with S. Typhimurium bacteraemia cases occur in children under-

two and the median is 13 months. S. Typhimurium-specific CD4+ T cell immunity peaks 

at 1 year of life while specific antibody immunity peaks at 3 years of age. Essentially the 

study demonstrates the age group of children that require public health intervention in 

form of vaccine. Development of a vaccine for S. Typhimurium that can promote the 

generation of antibody and T cell immunity in children below 2 years is required in 

Malawian children and SSA. Currently, even the two licenced vaccines for typhoid fever, 

no vaccine is recommended for administration in children below 2 year of age 

(Germanier & Fuer, 1975, Guzman, et al., 2006, Khan, et al., 2010), indicating the need 

for Salmonella vaccine for both  S. Typhi and NTS in children below 2 years. As much as 

it is generally agreed that vaccination for NTS is required in under-two children, 

determining the appropriate time to administer a NTS vaccine is crucial. Children below 

6 months of age are at least protected by passively acquired maternal antibodies but are 

more vulnerable from 6 months to 36 months of age, as they are introduced to 
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supplementary food and passively acquired maternal antibodies continue to decline.  

Administration of NTS vaccine within the current immunization schedule would be 

pragmatic but would the timing be appropriate to elicit the desired immune response 

(antibody and T cell immunity). To effectively determine the time optimum time to 

administer a cross-protective vaccine; children of varying ages (1-24 months) will be 

investigated for immunogenicity elicited by the vaccine. Strong immune responses would 

signal appropriate age group to administer the vaccine but this would have to take into 

account when children are most vulnerable to invasive Salmonella bacteraemia to ensure 

that those most at risk are covered.   

 

The importance of S. Typhimurium derived FliC and OMP antigens were demonstrated 

in Chapter 3. These protein antigens positively correlated with age development of S. 

Typhimurium-specific CD4+Cytokine+ T cells. IgG antibody responses targeting S. 

Typhimurium derived LPS O;4,5  also  correlated with the development of  serum 

bactericidal activity to S. Typhimurium. Already these protein and polysaccharide 

antigens (FliC, OMP and LPS O;4,5) are being explored  in  pre-clinical phase as 

candidate vaccines (Udhayakumar & Muthukkaruppan, 1987, Cunningham, et al., 2004, 

Gil-Cruz, et al., 2009, Bobat, et al., 2011, Grimont PA. D and Weill, Cited 2007) either 

as conjugated polysaccharide vaccine or not. Further studies are required to evaluate 

vaccine candidates in pre-clinical phase now including FliC, OMP and LPS O antigen in 

humans, vaccines that confer cross-protection to Salmonella serovars causing substantial 
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burden in SSA and induce generation of memory B and T cell immunity should be 

prioritized.  

 

Antibody based vaccine for NTS is required as a means to control invasive NTS disease 

but moving forward with this would require determining key antibody targets that 

mediate SBA. During infection Salmonella does express a range of antigens or genes in 

various tissues for its survival (Lee, et al., Miller, et al., 1989, Ohl & Miller, 2001, 

Charles, et al., 2010). Therefore it is crucial to determine whether antibody target 

expressed by NTS are similar or not within the gut mucosa and systemic circulation. To 

effectively determine key antibody targets at various stage of infection or in various 

tissues; children infected with either or both gut localised and systemic Salmonella 

disease will be investigated during the acute and convalesces to determine antibody target 

profile using both immunological tools and molecular tools (proteomics, microarrays) as 

described before (Lee, et al., Charles, et al., 2010). This will help to inform the 

development of subunit vaccine for Salmonella.  

 

7.3.2 Salmonella exposure and development of specific-antibody  immunity in 

Malawian children 

Chapter 4 demonstrates that among children aged 6-18 months, 46.8% were exposed to 

Salmonella at least once within the GIT over a period of 1 year. Importantly, this 

demonstrates that Salmonella exposure within the GIT associated with the development 
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of ‘protective’ serum bactericidal activity (SBA) to S. Typhimurium D23580 in children. 

Whether or not natural Salmonella exposure within the gut confers protection to 

subsequent Salmonella infection within the gut and peripheral blood is a key question.  

Potentially protective SBA in this study was defined as SBA of at least -1 log10 change 

in Salmonella cfu/ml. Although acquisition of SBA or IgG antibodies to Salmonella 

correlates with the decline in bacteraemia cases of both NTS and S. Typhi in children 

(MacLennan, et al., 2008, Lindow, et al., 2011), correlates of protection for Salmonella 

bacteraemia are poorly defined. Recently, SBA assay has been proposed as key 

immunological tool for evaluation of Salmonella vaccines efficacy (Boyd, et al., 2014). 

To address this question a large cohort of healthy children (age 0-24 months) will be 

conducted. Children will be tested for Salmonella exposure within the GIT and blood by 

culture and PCR and this will be related with acquisition of potentially protective SBA as 

described in Chapter 4 and as before (MacLennan, et al., 2008, Boyd, et al., 2014). 

Children will be examined at scheduled visits and also whenever they experience 

gastrointestinal symptoms or bacteraemia symptoms. A total of 29 Salmonella positive 

stool were detected by culture or PCR. Salmonellae isolates were principally S. 

Typhimurium 51.7% (15/29), followed by non-defined serovars 31% (9/29), S. Typhi 

10.3% (3/29) and S. Enteritidis 7% (2/29). Chapter 4 demonstrates that some children had 

at least twice Salmonella positive stool by culture or PCR, 24% (7/29). Importantly, a 

majority of these 71% (5/7) were exposed to the same serovar S. Typhimurium. As 

hypothesised before, it is possible that protection develops following multiple Salmonella 

exposure events (Saul, et al., 2013, Pitzer, et al., 2014). Whether protection to Salmonella 
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is established following multiples exposure events will also be explored by comparing 

SBA amongst children exposed to Salmonella once and multiple times. Whether 

protection to Salmonella is established following exposure to a same Salmonella serovar 

or strain will also be investigated by comparing children SBA amongst those exposed to 

Salmonella serovar or strain and those exposed to multiple serovars or strains. Isolates 

from this cohort will be characterised phenotypically and also molecularly.   

 

Normal flora of the GIT contributes to resistance of enteric pathogens including 

Salmonella from colonizing the gut lumen (Endt, et al., 2010, Stecher & Hardt, 2011). 

The changes in microbial flora could result from a number of  factors including; breast 

feeding practices, administration of antibiotics and the virulence of the infecting pathogen 

(Lolekha, 1986, Pavia, et al., 1990, Bollaerts, et al., 2008, Gradel, et al., 2008, Endt, et 

al., 2010, Kaiser, et al., 2012). It has been demonstrated before that usage of antibiotics 

(particularly broad spectrum) disrupts the composition of gut microbial flora and 

Salmonella may take advantage of this to invade the gut lumen barrier (Lolekha, 1986, 

Pavia, et al., 1990, Gradel, et al., 2008, Endt, et al., 2010, Kaiser, et al., 2012). The 

variation of gut microbial flora composition in breast fed children and non-breast fed has 

been shown before (Gonzalez, et al., 2013). Chapter 4 demonstrates Salmonella exposure 

events within the period of 1 year (6 to 18 months). Whether or not microbial flora 

changes in the gut lumen predispose children to Salmonella colonisation is a key 

question. To investigate whether the Salmonella exposure events detected in this cohort 

are associated with the changes in normal flora, archive stool samples (Salmonella 
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exposed and non-exposed) collected in this cohort will be investigated for microbiome 

changes by shotgun sequencing as described before (Yatsunenko, et al., 2012) and this 

will be related to Salmonella exposure events. Antibiotic usage and breast feeding 

practices will also be investigated whether they contribute to changes in gut microbiome 

in relation to Salmonella exposure events in this cohort. Studying the microbiome 

changes by shotgun sequencing in relation to the Salmonella exposure events in this 

cohort will help to explain factors that render children susceptible to both gut localized 

and disseminated Salmonella infections. 

 

Malawi is among the malaria endemic countries (Mathanga, et al., 2012), with 

asymptomatic parasitaemia rates ranging between 11.2-18.5% (Roca-Feltrer, et al., 

2012). In Blantyre, the Plasmodium falciparum parasite rate for children 2-<10 years is 

the lowest in Malawi (26%) (Bennett, et al., 2013). Case fatality among children 

presenting to hospital with malaria and Salmonella BSI or any other BSI co-infection is 

higher compared to children that present with malaria infection alone (Bassat, et al., 

2009). In this cohort, there was a trend that did not reach statistical significance that 

children that had taken antimalarial drugs were at higher risk of being exposed to 

Salmonella. It has been shown in mice models that malaria infection compromises 

neutrophil immunity and favours Salmonella to spread into the blood stream (Roux, et 

al., 2010, Cunnington, et al., 2012, Maclennan, 2014). Neutrophils are key players in 

providing the primary immunity to rapidly dividing NTS within the gut mucosa and 

hence preventing the spread of NTS into the systemic organs (Tam, et al., 2008). 
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Correlates of protection for NTS bacteraemia have not been clearly defined in humans. 

IgG antibodies to Salmonella LPS are important for protection against NTS bacteraemia 

(Chapter 3) and also previously described (MacLennan, et al., 2008, Lindow, et al., 

2011). To investigate whether malaria parasites impairs neutrophils or monocytes  

effector function to Salmonella, it is not feasible to recruit children presenting with 

malaria and NTS co-infection, hence investigations will involve development of in-vitro 

malaria and NTS co-infection model to study bacterial growth kinetics during malaria 

infection. Malawian children aged (6-60 months) suffering from uncomplicated malaria 

will be investigated for impairment of neutrophil mediated immunity to NTS or 

Streptococcus pneumoniae (control) during acute and early convalescent phases. Briefly, 

whole blood or neutrophils plus red blood cells (RBCs) from subjects (malaria infected or 

healthy controls) will be challenged with NTS or Streptococcus pneumoniae (control) 

and examined for growth inhibition on LB agar plates. The contribution of antibody 

mediated neutrophil killing will be examined in anti-NTS-IgG antibody depleted and 

non-depleted plasma or serum as previously described (Trebicka, et al., 2013). 

Neutrophils will also be examined for respiratory burst as previously described (Gondwe, 

et al., 2010). Serum levels of IL-10 will be quantified by ELISA to explore the 

contribution of regulatory cytokines to this immunity. This study will therefore help to 

explain or define the immunological basis of immune impairment favouring bacterial BSI 

during malaria infection and associated poor health outcomes. These investigations 

would potentially provide rational basis for modifying the clinical management of 

malaria infection in children from SSA by revising the current management guidelines to 
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include routine provision of antibiotics to children suffering from malaria. It can further 

help to define those at greater risk and might require targeted antimicrobial treatment. 

 

7.3.3 Development of T cell and  antibody mediated immunity  in response to 

invasive Salmonella infection  

Among children that had S. Typhi bacteraemia, IgG ASCs targeting LPS O;4, 5 antigen 

and LPS O;9 correlated positively suggesting that  IgG antibodies targeting LPS O 

antigen induced by S. Typhi infection cross-react with S. Typhimurium LPS O (Chapter 

5). Already there is evidence that Ty21a and CVD 909 induce opsonophagocytic 

functional antibodies in humans that cross-react with S. Paratyphi A and S. Paratyphi B 

(Wahid, et al., 2014). It is possible that currently licensed vaccines (for instance Ty21a) 

could confer cross protection to other Salmonella serovars in populations where the 

disease burden is considerable but there is no specific NTS vaccine available. To address 

the question of whether or not current licenced Salmonella vaccines for S. Typhi (Ty21a) 

confer cross-protection to NTS serovars in humans, a clinical study will be conducted to 

investigate the importance of cross-reactive antibodies in conferring protection. In a 

cohort of children older than 5 years vaccinated or not with Ty21a antibody immune 

responses to a range of Salmonella serovars (S. Typhimurium, S. Typhi and S. 

Enteritidis) derived antigens will be quantified by ELISA. Furthermore, SBA to a range 

of Salmonella serovars will be quantified to determine whether Ty21a vaccination 

facilitates development of cross-protective SBA. SBA will be examined as described in 
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Chapter 3 and before (MacLennan, et al., 2008, Boyd, et al., 2014). This study will 

inform the development of cross-protective vaccine for Salmonella and also provide the 

basis for use of currently licenced vaccines (such as Ty21a) in areas where NTS is an 

important public problem but there is no specific vaccine available.  

 

The burden of Salmonella in SSA is huge, and yet this is under appreciated partly due to 

lack of data on disease burden. Estimating the true burden of Salmonella has been 

challenging because data is patchy and confined largely to sentinel facility-based 

surveillance (Crump & Heyderman, 2014). The pattern of invasive NTS strains (S. 

Typhimurium and S. Enteritidis) transmission in SSA  is not clear and whether it is from 

human to human or from animals to human (Kariuki, et al., 2006) remains to be 

determined. Furthermore, the reservoirs for invasive NTS strains remain unknown. This 

is further hampered by lack for diagnostics for Salmonella. Whether immunological tools 

can help to understand the epidemiology of Salmonella in SSA is a key question.  

Chapter 5 demonstrates that the frequency of Salmonella-specific CD4+IFN-γ+ T cells 

was generally higher in healthy family members compared to index cases at both the 

acute phase and at 1 month into recovery period. These findings suggest that these 

healthy family members were previously exposed to Salmonella and further underlying 

the need for epidemiological study to understand the pattern of Salmonella disease 

transmission amongst cases and household contacts in this population. Children that had 

S. Typhi bacteraemia their IgG ASCs targeting FliC, OMP and LPS O antigens were 

significantly elevated compared to healthy family members suggesting that these 
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antibody targets can be explored for use as diagnostic markers (Chapter 5). But the 

challenge with the available diagnostic tools including Widal test for diagnosis of typhoid 

is the lack of specificity. Antibodies targeting LPS O;9 cross-react with LPS O;4,5 hence 

might not be ideal for development of diagnostic tools. Salmonella derived OMP (crude 

preparation) might also not be ideal for development of diagnostic tools due to cross-

reactivity between S. Typhimurium and S. Typhi.  

To effectively develop immunological tool for diagnosis of Salmonella and also for 

epidemiological studies (burden of disease), unique antibody targets for Salmonella in 

acute and convalescent patients will need to be determined using of advance technologies 

including proteomic and micro-array technologies (Lee, et al., Charles, et al., 2010). 

These unique targets for antibodies will then be investigated as diagnostic markers and be 

used to determine the burden of disease in cases and house hold contacts. Additional tests 

including blood and stool (culture and PCR) will be conducted to validate these tools.  

 

7.3.4 Ty21a oral typhoid vaccine induced immunity in the peripheral blood and 

gut mucosa of healthy adults 

The gut mucosa immunity mediated by both innate cell and adaptive cells has long been 

recognised to provide primary defence to enteric pathogens that potentially disseminate 

into the peripheral blood (Tam, et al., 2008, Hapfelmeier, et al., 2010). Little is known 

about the natural immunizing events occurring within the gut mucosa (GALTs) mainly 

due to anatomical barrier to obtain samples from the gut. Use of invasive methods to 
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evaluate immune response within is not recommended for other groups of interest like 

children and HIV infected individuals. There is evidence that oral vaccine induces both B 

cell and T cell immunity within the gut mucosa and antigen specific cells home back to 

the gut mucosa as dictated by expression of β7 and CCR9  as shown in  Chapter 6 and as 

shown before (Lundin, et al., 2002, Salerno-Goncalves, et al., 2002). There is evidence of 

compartmentalization of effector immune responses within the gut mucosa and the 

peripheral blood depending on the route of immunization for instance oral or  systemic 

vaccination (Quiding-Jarbrink, et al., 1997). Whether or not there is a relationship 

between B cell and T cell immune responses to Salmonella infection within the gut 

mucosa and peripheral blood is a key question. To answer this question, a clinical study 

will be conducted where Salmonella infected children with either gut localised or 

bacteraemia will be recruited. These children will be sampled blood to quantify 

Salmonella specific IgG or IgA ASC and memory T cells expressing gut homing markers 

including β7, CCR9 and CD62L. By comparing the nature of immune responses in 

children with gut localised Salmonella infection versus those with blood stream infection, 

the study will help to understand relationship between gut mucosa and peripheral blood 

immune responses. This will also help to inform vaccine design and also determine the 

suitable route of vaccination either oral or systemic.   
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Figure 7. 1: Natural acquisition of immunity to Salmonella in children  

Naïve children are more vulnerable to Salmonella infections as their immunity relies on 

innate arm of immunity to resist infections. Natural Salmonella exposure with the gut 

mucosa and peripheral blood facilitates the development of adaptive immunity 

(antibodies and T cells) within the gut associate lymphoid tissues (GALTs) and 

secondary lymphoid tissues (SLT). This permits establishment of high level of resistance 

to subsequent to Salmonella within the gut mucosa and peripheral blood compartments.   

 

7.4  Conclusion  

Many young Malawian children are naturally exposed to Salmonella. Salmonella 

exposure has previously been assumed to occur within the GIT, and may occasionally 

occur systemically beginning from young age. The studies included in this thesis suggest 
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that Salmonella exposure induces the sequential generation of T cells and antibodies 

directed against Salmonella that might provide protection to subsequent Salmonella 

infection. T cells might provide help for the generation of antibodies, and antibodies are 

crucial for serum bactericidal activity to Salmonella. These studies further show for the 

first time that natural exposure to Salmonella within the GIT is associated with the 

acquisition of potentially-protective serum bactericidal to invasive Salmonella strains in 

Malawian children. The acquisition of both antibody and T cell immunity is thought to 

control invasive Salmonella disease (see Figure 7.1). The studies also specifically explore 

the contribution of exposure to invasive Salmonella to responses to specific potential 

vaccine targets. Important risk factors for Salmonella infection include young age (< 2 

years) and this study provides preliminary data to suggest that environmental factors such 

as contaminated river or stream water are also important risk factors. Studies directly 

investigating the mucosal cellular response to Salmonella were inconclusive, and further 

work to understand the nature of mucosal immunology and responses to Salmonella is 

required. Public health interventions are urgently required in SSA including vaccination 

strategies that are effective in young children, improvements in sanitation, access to clean 

and safe water and food hygiene.   
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