5 research outputs found
Micromachining of micro and ultrafine-structured metals
The microstructure of machined metals change near the tool affected zone. This paper presents some new results concerning mirror-like surface cutting of aluminum and copper. The microstructure of aluminum and copper represents the polycrystalline mild metals with face centered cubic (fcc) crystal lattice. The examination of mirror-like surface by optical microscopy, scanning electron microscopy, electron backscattered diffraction (EBSD) and atomic force microscopy show the grain boundaries and twin boundaries, which separates two domains for different crystal orientation. Young´s modulus that depends on orientation can change considerably on these boundaries, consequently the value of elastic deformation of the layer under machined surface. This effect modified the roughness too. Aluminum and copper were cut as ``conventional´´ micro-structured metals used in everyday practice and after so called ECAP process with ultrafine-crystalline structure, for examining effects of crystal size on machinability and surf
ace integrity of machined mirror surfaces. Results of these comparative experiments are discussed in this paper
Matematisches Modell des Mikrodrehens
Recently the cost-economy is a very important component in production.
That´s
why has the modeling so great importance: we can draw conclusions from the
attempts made with computer. Thus we can produce results already on lower
cost-level.
The modeling was introduced by FORM 2D program. This is a FEM program in
which
we can examine different geometrical dates (cutting depth, cutting edge
radius).
In the program we are able to set different material quality,
machining-tool
and coolant (we also can change the feedrate). That´s why we can produce
very many kind versions and make examinations, too.
Mainly the load, the material-flow, the critical displacement, the
temperature-zones and the surface-stress can be examined. From these values
we
can draw final conclusion applied the geometry. By optimalization the
values we
are able to define how great cutting depth, cutting edge radius, feedrate
are that we work with and which machining-tool is needed
GĂ©pipari környezetkĂmĂ©lĹ‘ megmunkálási eljárások vizsgálata, modellezĂ©se = Modelling and Examination of Machine Industrial Environmentally Conscious Manufacturing Procedures
CĂ©lunk a környezetkĂmĂ©lĹ‘ "száraz", vagy minimális kenĹ‘anyag felhasználást alkalmazĂł forgácsolĂł megmunkálások elmĂ©letĂ©nek vizsgálata, gyakorlatának kidolgozása volt. Megoldott feladatok: 1. Mechanikai modell felállĂtása, tribolĂłgiai modell kĂ©szĂtĂ©se, vĂ©geselemes vizsgálatok a) ElmĂ©leti modellek felállĂtása A forgácsolási folyamat modellezĂ©se. A forgácsolási folyamat mechanikája (szabad forgácsolás, kötött forgácsolás esetĂ©n). A hűtĹ‘-kenĹ‘ folyadĂ©k környezeti hatásának elemzĂ©se. b) VĂ©geselemes vizsgálatok. A környezetkĂmĂ©lĹ‘ eljárások forgácsolási modellezĂ©se esetĂ©n figyelembe kell venni a speciális feltĂ©teleket. Vizsgálatainknál cĂ©l a nagy alakváltozásokat tartalmazĂł vĂ©geselemes program vizsgálata, eredmĂ©nyeinek kiĂ©rtĂ©kelĂ©se volt. 2. CCD kamerás vizsgálatok. A szerszámkopás vizsgálatának egy modern mĂłdszere a CCD kamerás vizsgálatok alkalmazása. 3. KĂsĂ©rleti vizsgálatok. Az elmĂ©leti vizsgálatok kiegĂ©szĂtĂ©se cĂ©ljábĂłl illetve a megalkotott modellek jĂłságának ellenĹ‘rzĂ©se vĂ©gett kĂsĂ©rleti vizsgálatokat vĂ©geztĂĽnk. a) A forgácsoláshoz szĂĽksĂ©ges forgácsolĂłerĹ‘ Ă©s nyomatĂ©k vizsgálata, tribolĂłgiai vizsgálatok, szerszámkopások elemzĂ©se. b) A megmunkált felĂĽlet felĂĽleti Ă©rdessĂ©gĂ©nek vizsgálata. A kĂsĂ©rleti vizsgálatok elĹ‘kĂ©szĂtĂ©sĂ©hez, az eredmĂ©nyek kiĂ©rtĂ©kelĂ©sĂ©hez Ă©s megjelenĂtĂ©sĂ©hez a faktoriális kĂsĂ©rlettervezĂ©s mĂłdszerĂ©t alkalmaztuk. | Our aim was to study the theory and practice of those type cutting technologies which are done by environmentally conscious way that is they are "dry" or "use of minimum volume of coolants and lubricants" Solved tasks: 1. Creations of mechanical models, tribological models, Finite Element Analyses a) Setting up theoretic models We have modelled the cutting processes. We have examined of mechanics of cutting processes (in case of orthogonal cutting, restricted cutting). We have analysed the effects of the coolants and lubricants. b) Finite Element Examinations. At the modelling of cutting of environmentally conscious procedures we hadto take into account special circumstances. Our aim was the analysing of Finite Element Method having large strains. We evaluated the calculated results. 2. CCD camera examinations. A new method of examination of cutting tool wear was the use of the up-to-date CCD cameras. 3. Experimental investigations. For completing of theoretical examinations, or checking the how proper the created models was, we have done experimental investigations. a) Examination cutting forces and torques necessary for cutting procedures. Tribological investigations, examinations of cutting tool wear. b) Examination of surface roughness of the machined surfaces. For preparing the experiments, for doing the experiments and for demonstrating the measured data we have used the effective method of Factorial Experiment Design
Nanoszerkezetű anyagok forgácsolási tulajdonságainak és felület integritásának vizsgálata = Analysis of Surface Integrity and Cutting Properties of Nano Structural Materials
A kutatĂł munka során azt vizsgáltuk meg, hogy az anyag szemcsemĂ©retĂ©nek finomĂtásával hogyan változik a forgácsolt felĂĽlet topográfiája. Forgácsolási kĂsĂ©rleteinkhez ultrafinom- Ă©s szubmikronos szemcsemĂ©retű (5000-100 nm) prĂłbatesteket állĂtottunk elĹ‘ intenzĂv kĂ©plĂ©keny-alakĂtással, valamint ezt kiegĂ©szĂtĹ‘ hĹ‘kezelĂ©si eljárással. KĂsĂ©rleti anyagkĂ©nt OFHC (oxygen free high conductivity) rĂ©z Ă©s 0,1%C-Mn acĂ©l szolgáltak. Az acĂ©l prĂłbatesteket polikristályos CBN szerszámmal forgácsoltuk. A kiindulĂł szemcsemĂ©retű Ă©s szubmikronos prĂłbatestek forgácsolt felĂĽleti Ă©rdessĂ©ge között nem tapasztaltunk szignifikáns eltĂ©rĂ©st. RĂ©szletes vizsgálattal kimutattuk, hogy polikristályos Ă©llel forgácsolva, a felĂĽlet Ă©rdessĂ©gĂ©t az Ă©l Ă©rdessĂ©ge, valamint a geometriai- kinematikai viszonyok határozzák meg. GyĂ©mánt egykristály Ă©llel törtĂ©nĹ‘ forgácsoláskor a felĂĽlet topográfiai kialakulásában a szubmikronos szemcsemĂ©ret esetĂ©n az anyag anizotrĂłp tulajdonságait elhanyagolhatjuk. A felĂĽlet egyenetlensĂ©ge az elmĂ©leti kinematikai-geometriai viszonyokbĂłl számĂthatĂł. A forgácsolás vĂ©geselemes modelljĂ©ben az anyag szemcseszerkezetĂ©t kvázi amorf szerkezetnek tĂ©telezhetjĂĽk fel. | During the research work the effect of grain refinement of workpiece material on machined surface topography was investigated in detail. Test pieces of ultra fine and submicron grained microstructure (5000-100 nm) were prepared by severe plastic deformation and additional heat treatment process. OFHC (oxygen free high conductivity) and 0,1%C-Mn steel were chosen as testing materials. Steel specimens were machined by polycrystalline CBN tool. No significant difference was experienced between the surface roughness of the specimens of initial grain size and of submicron grain size. It was particularly demonstrated that surface roughness developed after machining by polycrystalline cutting edge is influenced by the cutting edge roughness, and by the geometric and kinematic conditions. It can be stated that in the range of submicron grain size the anisotropic properties of workpiece material can be ignored in formation of surface topography, if monocrystalline diamond tool is used. The value of surface roughness can be calculated from the geometric and kinematic conditions. Material grain structure was considered as to be in quasi amorphous state in the finite element model of machining