56 research outputs found
Characterizing the Host and Symbiont Proteomes in the Association between the Bobtail Squid, Euprymna scolopes, and the Bacterium, Vibrio fischeri
The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT) in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS) in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS) inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association
Obtaining Hemocytes from the Hawaiian Bobtail Squid Euprymna scolopes and Observing their Adherence to Symbiotic and Non-Symbiotic Bacteria
Studies concerning the role of the immune system in mediating molecular signaling between beneficial bacteria and their hosts have, in recent years, made significant contributions to our understanding of the co-evolution of eukaryotes with their microbiota. The symbiotic association between the Hawaiian bobtail squid, Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri has been utilized as a model system for understanding the effects of beneficial bacteria on animal development. Recent studies have shown that macrophage-like hemocytes, the sole cellular component of the squid host's innate immune system, likely play an important role in mediating the establishment and maintenance of this association. This protocol will demonstrate how to obtain hemocytes from E. scolopes and then use these cells in bacterial binding assays. Adult squid are first anesthetized before hemolymph is collected by syringe from the main cephalic blood vessel. The host hemocytes, contained in the extracted hemolymph, are adhered to chambered glass coverslips and then exposed to green fluorescent protein-labeled symbiotic Vibrio fischeri and non-symbiotic Vibrio harveyi. The hemocytes are counterstained with a fluorescent dye (Cell Tracker Orange, Invitrogen) and then visualized using fluorescent microscopy
Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics
The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/tandem mass spectrometry (LC-MS/MS) proteomic analyses. 454 high-throughput sequencing produced 650, 686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial-associated molecular patterns were identified. Among these was a complete open reading frame to a putative peptidoglycan recognition protein (EsPGRP5) with conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NF-κB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative Real-Time PCR of complement-like genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes from adult squid with colonized light organs compared to those isolated from hosts where the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of E. scolopes
Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and Differentially Inhibits Vibrios
Female members of many cephalopod species house a bacterial consortium that is part of their reproductive system, the accessory nidamental gland (ANG). These bacteria are deposited into eggs that are then laid in the environment where they must develop unprotected from predation, pathogens and fouling. In this study, we characterized the genome and secondary metabolite production of Leisingera sp. JC1, a member of the roseobacter clade (Rhodobacteraceae) of Alphaproteobacteria isolated from the jelly coat of eggs from the Hawaiian bobtail squid, Euprymna scolopes. Whole genome sequencing and MLSA analysis revealed that Leisingera sp. JC1 falls within a group of roseobacters associated with squid ANGs. Genome and biochemical analyses revealed the potential for and production of a number of secondary metabolites, including siderophores and acyl-homoserine lactones involved with quorum sensing. The complete biosynthetic gene cluster for the pigment indigoidine was detected in the genome and mass spectrometry confirmed the production of this compound. Furthermore, we investigated the production of indigoidine under co-culture conditions with Vibrio fischeri, the light organ symbiont of E. scolopes, and with other vibrios. Finally, both Leisingera sp. JC1 and secondary metabolite extracts of this strain had differential antimicrobial activity against a number of marine vibrios, suggesting that Leisingera sp. JC1 may play a role in host defense against other marine bacteria either in the eggs and/or ANG. These data also suggest that indigoidine may be partially, but not wholly, responsible for the antimicrobial activity of this squid-associated bacterium.
Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schmidbaur, H., Kawaguchi, A., Clarence, T., Fu, X., Hoang, O. P., Zimmermann, B., Ritschard, E. A., Weissenbacher, A., Foster, J. S., Nyholm, S., Bates, P. A., Albertin, C. B., Tanaka, E., & Simakov, O. Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nature Communications, 13(1), (2022): 2172, https://doi.org/10.1038/s41467-022-29694-7.Coleoid cephalopods (squid, cuttlefish, octopus) have the largest nervous system among invertebrates that together with many lineage-specific morphological traits enables complex behaviors. The genomic basis underlying these innovations remains unknown. Using comparative and functional genomics in the model squid Euprymna scolopes, we reveal the unique genomic, topological, and regulatory organization of cephalopod genomes. We show that coleoid cephalopod genomes have been extensively restructured compared to other animals, leading to the emergence of hundreds of tightly linked and evolutionary unique gene clusters (microsyntenies). Such novel microsyntenies correspond to topological compartments with a distinct regulatory structure and contribute to complex expression patterns. In particular, we identify a set of microsyntenies associated with cephalopod innovations (MACIs) broadly enriched in cephalopod nervous system expression. We posit that the emergence of MACIs was instrumental to cephalopod nervous system evolution and propose that microsyntenic profiling will be central to understanding cephalopod innovations.H.S., O.P.H., E.R., and O.S. were supported by the Austrian Science Fund (FWF) grant P30686-B29. O.S. was supported by Whitman Center Early Career Fellowship (Frank R. Lillie Quasi-Endowment Fund, L. & A. Colwin Summer Research Fellowship, Bell Research Award in Tissue Engineering). H.S. was supported by the short-term grant abroad (KWA) of the University of Vienna. H.S. and O.S. were supported by the University of Chicago/Vienna Strategic Partnership Programme Mobility Grant. A.K. was supported by the JSPS Postdoctoral Fellowship for Overseas Researchers program from Japan. C.B.A. was supported by the Hibbitt Early Career Fellowship. Eggs and paralarvae of E. scolopes were generated in part by support by the NASA Space Biology 80NSSC18K1465 awarded to J.S.F. S.V.N. was supported by the National Science Foundation IOS-1557914. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC0001003), the UK Medical Research Council (FC001003), and the Wellcome Trust (FC001003)
Validity of self-reported weight, height, and body mass index among university students in Thailand: Implications for population studies of obesity in developing countries
<p>Abstract</p> <p>Background</p> <p>Large-scale epidemiological studies commonly use self-reported weights and heights to determine weight status. Validity of such self-reported data has been assessed primarily in Western populations in developed countries, although its use is widespread in developing countries. We examine the validity of obesity based on self-reported data in an Asian developing country, and derive improved obesity prevalence estimates using the "reduced BMI threshold" method.</p> <p>Methods</p> <p>Self-reported and measured heights and weights were obtained from 741 students attending an open university in Thailand (mean age 34 years). Receiver operator characteristic techniques were applied to derive "reduced BMI thresholds."</p> <p>Results</p> <p>Height was over-reported by a mean of 1.54 cm (SD 2.23) in men and 1.33 cm (1.84) in women. Weight was under-reported by 0.93 kg (3.47) in men and 0.62 kg (2.14) in women. Sensitivity and specificity for determining obesity (Thai BMI threshold 25 kg/m<sup>2</sup>) using self-reported data were 74.2% and 97.3%, respectively, for men and 71.9% and 100% for women. For men, reducing the BMI threshold to 24.5 kg/m<sup>2 </sup>increased the estimated obesity prevalence based on self-reports from 29.1% to 33.8% (true prevalence was 36.9%). For women, using a BMI threshold of 24.4 kg/m<sup>2</sup>, the improvement was from 12.0% to 15.9% (true prevalence 16.7%).</p> <p>Conclusion</p> <p>Young educated Thais under-report weight and over-report height in ways similar to their counterparts in developed countries. Simple adjustments to BMI thresholds will overcome these reporting biases for estimation of obesity prevalence. Our study suggests that self-reported weights and heights can provide economical and valid measures of weight status in high school-educated populations in developing countries.</p
Symbiotic organs shaped by distinct modes of genome evolution in cephalopods.
Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of Euprymna scolopes, a model cephalopod with richly characterized host-microbe interactions. We identified large-scale genomic reorganization shared between E. scolopes and Octopus bimaculoides and posit that this reorganization has contributed to the evolution of cephalopod complexity. To reveal genomic signatures of host-symbiont interactions, we focused on two specialized organs of E. scolopes: the light organ, which harbors a monoculture of Vibrio fischeri, and the accessory nidamental gland (ANG), a reproductive organ containing a bacterial consortium. Our findings suggest that the two symbiotic organs within E. scolopes originated by different evolutionary mechanisms. Transcripts expressed in these microbe-associated tissues displayed their own unique signatures in both coding sequences and the surrounding regulatory regions. Compared with other tissues, the light organ showed an abundance of genes associated with immunity and mediating light, whereas the ANG was enriched in orphan genes known only from E. scolopes Together, these analyses provide evidence for different patterns of genomic evolution of symbiotic organs within a single host
Cephalopod genomics: a plan of strategies and organization
The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, "Paths to Cephalopod Genomics-Strategies, Choices, Organization," held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper
Cephalopod genomics : a plan of strategies and organization
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Standards in Genomic Sciences 7 (2012): 175-188, doi:10.4056/sigs.3136559.The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, “Paths to Cephalopod Genomics- Strategies, Choices, Organization,” held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod molluscs. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this White Paper.The Catalysis Group Meeting was supported by the National Science Foundation through the National Evolutionary Synthesis Center (NESCent) under grant number NSF #EF-0905606
- …