603 research outputs found
Tunneling Spectroscopy of Quasiparticle Bound States in a Spinful Josephson Junction
The spectrum of a segment of InAs nanowire, confined between two
superconducting leads, was measured as function of gate voltage and
superconducting phase difference using a third normal-metal tunnel probe.
Sub-gap resonances for odd electron occupancy---interpreted as bound states
involving a confined electron and a quasiparticle from the superconducting
leads, reminiscent of Yu-Shiba-Rusinov states---evolve into Kondo-related
resonances at higher magnetic fields. An additional zero bias peak of unknown
origin is observed to coexist with the quasiparticle bound states.Comment: Supplementary information available here:
https://dl.dropbox.com/u/1742676/Chang_Sup.pd
Migrating to Cloud-Native Architectures Using Microservices: An Experience Report
Migration to the cloud has been a popular topic in industry and academia in
recent years. Despite many benefits that the cloud presents, such as high
availability and scalability, most of the on-premise application architectures
are not ready to fully exploit the benefits of this environment, and adapting
them to this environment is a non-trivial task. Microservices have appeared
recently as novel architectural styles that are native to the cloud. These
cloud-native architectures can facilitate migrating on-premise architectures to
fully benefit from the cloud environments because non-functional attributes,
like scalability, are inherent in this style. The existing approaches on cloud
migration does not mostly consider cloud-native architectures as their
first-class citizens. As a result, the final product may not meet its primary
drivers for migration. In this paper, we intend to report our experience and
lessons learned in an ongoing project on migrating a monolithic on-premise
software architecture to microservices. We concluded that microservices is not
a one-fit-all solution as it introduces new complexities to the system, and
many factors, such as distribution complexities, should be considered before
adopting this style. However, if adopted in a context that needs high
flexibility in terms of scalability and availability, it can deliver its
promised benefits
A Pedagogy of Play: How Pre- and In-Service Early Childhood Teachers’ Perceptions of Play are Influenced as a Result of Practicum Experience in a Play-Based Environment
There is a growing body of research behind the play-based movement in education today – a topic that is somewhat controversial (Nicolopoulou et al., 2010; Overstreet, 2018). While some are steeped in a more classical approach to early education, advocating learning should be painful (Adler & Van Doren, 1988), others are paving the way for a more progressive approach, suggesting play to be the premier window into a child’s development (Paley, 1979-2014; Wohlwend & Peppler, 2015). The purpose of this study was to look at how the perceptions of pre- and in-service teachers changed regarding play and storytelling after participating in a play and inquiry practicum. The study examined the experiences of 27 teachers, each with a story as unique as the person they grew to become. In an effort to understand, holistically, how the teachers were growing and changing, a triangulation of methods were employed - including the documentation of daily interactions, quantitative analyses, and in-depth interviews. The teachers, overall, reported a philosophical awakening, following the week of readings (Pre-Survey Composite = 1,565). For most, a slight reservation about the practical aspects of play, following the intensive week of teacher preparation work (Post 1 Composite = 1,487). And finally, a better understanding of play, theoretically and practically, following the three week play and inquiry workshop with the community children (Post 2 Composite = 1,513)
Thermopower of Aharonov-Bohm Interferometer with a Quantum Dot
We report on the thermopower of an Aharonov-Bohm interferometer (AB) with a
quantum dot in the Kondo limit. The thermopower is anomalously enhanced due to
the Kondo effect as in heavy fermion systems. In contrast to the bulk systems,
the sign of the thermopower can be changed by adjusting the energy level scheme
or the particle-hole asymmetry of a dot with the gate voltage. Further the
magnitude and even the sign of the thermopower in the AB ring can be changed at
will with varying either magnetic fields or the gate voltages.Comment: 4 pages, 3 figures, accepted for publication in Physical Review
Letter
Anisotropic Pair Correlations and Structure Factors of Confined Hard-Sphere Fluids: An Experimental and Theoretical Study
We address the fundamental question: how are pair correlations and structure factors of hard-sphere fluids affected by confinement between hard planar walls at close distance? For this purpose, we combine x-ray scattering from colloid-filled nanofluidic channel arrays and first-principles inhomogeneous liquid-state theory within the anisotropic Percus-Yevick approximation. The experimental and theoretical data are in remarkable agreement at the pair-correlation level, providing the first quantitative experimental verification of the theoretically predicted confinement-induced anisotropy of the pair-correlation functions for the fluid. The description of confined fluids at this level provides, in the general case, important insights into the mechanisms of particle-particle interactions in dense fluids under confinement
Electronic Structures of Quantum Dots and the Ultimate Resolution of Integers
The orbital angular momentum L as an integer can be ultimately factorized as
a product of prime numbers. We show here a close relation between the
resolution of L and the classification of quantum states of an N-electron
2-dimensional system. In this scheme, the states are in essence classified into
different types according to the m(k)-accessibility, namely the ability to get
access to symmetric geometric configurations. The m(k)-accessibility is an
universal concept underlying all kinds of 2-dimensional systems with a center.
Numerical calculations have been performed to reveal the electronic structures
of the states of the dots with 9 and 19 electrons,respectively. This paper
supports the Laughlin wave finction and the composite fermion model from the
aspect of symmetry.Comment: Two figure
Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states
Many-body correlations and macroscopic quantum behaviors are fascinating
condensed matter problems. A powerful test-bed for the many-body concepts and
methods is the Kondo model which entails the coupling of a quantum impurity to
a continuum of states. It is central in highly correlated systems and can be
explored with tunable nanostructures. Although Kondo physics is usually
associated with the hybridization of itinerant electrons with microscopic
magnetic moments, theory predicts that it can arise whenever degenerate quantum
states are coupled to a continuum. Here we demonstrate the previously elusive
`charge' Kondo effect in a hybrid metal-semiconductor implementation of a
single-electron transistor, with a quantum pseudospin-1/2 constituted by two
degenerate macroscopic charge states of a metallic island. In contrast to other
Kondo nanostructures, each conduction channel connecting the island to an
electrode constitutes a distinct and fully tunable Kondo channel, thereby
providing an unprecedented access to the two-channel Kondo effect and a clear
path to multi-channel Kondo physics. Using a weakly coupled probe, we reveal
the renormalization flow, as temperature is reduced, of two Kondo channels
competing to screen the charge pseudospin. This provides a direct view of how
the predicted quantum phase transition develops across the symmetric quantum
critical point. Detuning the pseudospin away from degeneracy, we demonstrate,
on a fully characterized device, quantitative agreement with the predictions
for the finite-temperature crossover from quantum criticality.Comment: Letter (5 pages, 4 figures) and Methods (10 pages, 6 figures
Noisy Kondo impurities
The anti-ferromagnetic coupling of a magnetic impurity carrying a spin with
the conduction electrons spins of a host metal is the basic mechanism
responsible for the increase of the resistance of an alloy such as
CuFe at low temperature, as originally suggested by
Kondo . This coupling has emerged as a very generic property of localized
electronic states coupled to a continuum . The possibility to design artificial
controllable magnetic impurities in nanoscopic conductors has opened a path to
study this many body phenomenon in unusual situations as compared to the
initial one and, in particular, in out of equilibrium situations. So far,
measurements have focused on the average current. Here, we report on
\textit{current fluctuations} (noise) measurements in artificial Kondo
impurities made in carbon nanotube devices. We find a striking enhancement of
the current noise within the Kondo resonance, in contradiction with simple
non-interacting theories. Our findings provide a test bench for one of the most
important many-body theories of condensed matter in out of equilibrium
situations and shed light on the noise properties of highly conductive
molecular devices.Comment: minor differences with published versio
Suppression of current in transport through parallel double quantum dots
We report our study of the I-V curves in the transport through the quantum
dot when an additional quantum dot lying in the Kondo regime is side-connected
to it. Due to the Kondo scattering off the effective spin on a side-connected
quantum dot the conductance is suppressed at low temperatures and at low
source-drain bias voltages. This zero-bias anomaly is understood as enhanced
Kondo scattering with decreasing temperature.Comment: 14 pages, 8 figure
- …
