11 research outputs found

    Trichomonas vaginalis Detection in Urogenital Specimens from Symptomatic and Asymptomatic Men and Women by Use of the cobas TV/MG Test

    Get PDF
    Trichomonas vaginalis is a prevalent sexually transmitted infection (STI). Diagnosis has historically relied on either microscopic analysis or culture, the latter being the previous gold standard. However, these tests are not readily available for male diagnosis, generally only perform well for symptomatic women, and are not as sensitive as nucleic acid amplification tests (NAATs). Men are largely asymptomatic but carry the organism and transmit to their sexual partners. This multicenter, prospective study evaluated the performance of the cobas T. vaginalis/Mycoplasma genitalium (TV/MG) assay for detection of T. vaginalis DNA compared with patient infection status (PIS) defined by a combination of commercially available NAATs and culture using urogenital specimens. A total of 2,064 subjects (984 men and 1,080 women, 940 [45.5%] symptomatic, 1,124 [54.5%] asymptomatic) were evaluable. In women, sensitivity ranged from 99.4% (95% confidence interval [CI] 96.8 to 99.9%) using vaginal samples to 94.7% (95% CI 90.2 to 97.2%) in PreservCyt samples. Specificity ranged from 98.9 to 96.8% (95% CI 95.4 to 97.8%). In men, the cobas TV/MG assay was 100% sensitive for the detection of T. vaginalis in both male urine samples and meatal swabs, with specificity of 98.4% in urine samples and 92.5% in meatal swabs. The cobas TV/MG is a suitable diagnostic test for the detection of T. vaginalis, which could support public health efforts toward infection control and complement existing STI programs

    Vibrio cholerae H-NS Silences Virulence Gene Expression at Multiple Steps in the ToxR Regulatory Cascade

    Get PDF
    H-NS is an abundant nucleoid-associated protein involved in the maintenance of chromosomal architecture in bacteria. H-NS also has a role in silencing the expression of a variety of environmentally regulated genes during growth under nonpermissive conditions. In this study we demonstrate a role for H-NS in the negative modulation of expression of several genes within the ToxR virulence regulon of Vibrio cholerae. Deletion of hns resulted in high, nearly constitutive levels of expression of the genes encoding cholera toxin, toxin-coregulated pilus, and the ToxT virulence gene regulatory protein. For the cholera toxin- and ToxT-encoding genes, elevated expression in an hns mutant was found to occur in the absence of the cognate activator proteins, suggesting that H-NS functions directly at these promoters to decrease gene expression. Deletion analysis of the region upstream of toxT suggests that an extensive region located far upstream of the transcriptional start site is required for complete H-NS-mediated repression of gene expression. These data indicate that H-NS negatively influences multiple levels of gene expression within the V. cholerae virulence cascade and raise the possibility that the transcriptional activator proteins in the ToxR regulon function to counteract the repressive effects of H-NS at the various promoters as well as to recruit RNA polymerase

    H-NS Binding and Repression of the ctx Promoter in Vibrio choleraeâ–¿

    Get PDF
    Expression of the ctx and tcp genes, which encode cholera toxin and the toxin coregulated pilus, the Vibrio cholerae O1 virulence determinants having the largest contribution to cholera disease, is repressed by the nucleoid-associated protein H-NS and activated by the AraC-like transcriptional regulator ToxT. To elucidate the molecular mechanism by which H-NS controls transcription of the ctxAB operon, H-NS repression and binding were characterized by using a promoter truncation series, gel mobility shift assays, and DNase I footprinting. Promoter regions found to be important for H-NS repression correlated with in vitro binding. Four main H-NS binding regions are present at ctx. One region overlaps the high-affinity ToxT binding site and extends upstream, another overlaps the ToxT low-affinity binding site around the −35 element, and the remaining two are located adjacent to one another downstream of the transcriptional start site. Competition for binding to the overlapping H-NS/ToxT binding sites was observed in gel mobility shift assays, where ToxT was found to displace H-NS from the ctx promoter region. In addition, regulatory differences between the ctx and tcpA promoters were examined. H-NS was found to have a higher relative binding affinity for the ctx promoter than for the tcpA promoter in vitro. In contrast to ToxT-dependent activation of the tcpA promoter, ToxT activation of ctx did not require the C-terminal domain of the α-subunit of RNA polymerase. These findings demonstrate that transcriptional regulation of ctx and tcpA by H-NS and ToxT is mechanistically distinct, and this may lead to important differences in the expression of these coregulated genes
    corecore