4,051 research outputs found
Polarization of tightly focused laser beams
The polarization properties of monochromatic light beams are studied. In
contrast to the idealization of an electromagnetic plane wave, finite beams
which are everywhere linearly polarized in the same direction do not exist.
Neither do beams which are everywhere circularly polarized in a fixed plane. It
is also shown that transversely finite beams cannot be purely transverse in
both their electric and magnetic vectors, and that their electromagnetic energy
travels at less than c. The electric and magnetic fields in an electromagnetic
beam have different polarization properties in general, but there exists a
class of steady beams in which the electric and magnetic polarizations are the
same (and in which energy density and energy flux are independent of time).
Examples are given of exactly and approximately linearly polarized beams, and
of approximately circularly polarized beams.Comment: 9 pages, 6 figure
Ab-initio elastic tensor of cubic TiAlN alloy: the dependence of the elastic constants on the size and shape of the supercell model
In this study we discuss the performance of approximate SQS supercell models
in describing the cubic elastic properties of B1 (rocksalt)
TiAlN alloy by using a symmetry based projection technique. We
show on the example of TiAlN alloy, that this projection
technique can be used to align the differently shaped and sized SQS structures
for a comparison in modeling elasticity. Moreover, we focus to accurately
determine the cubic elastic constants and Zener's type elastic anisotropy of
TiAlN. Our best supercell model, that captures accurately both
the randomness and cubic elastic symmetry, results in GPa,
GPa and GPa with 3% of error and for Zener's
elastic anisotropy with 6% of error. In addition, we establish the general
importance of selecting proper approximate SQS supercells with symmetry
arguments to reliably model elasticity of alloys. In general, we suggest the
calculation of nine elastic tensor elements - , , ,
, , , , and , to evaluate and
analyze the performance of SQS supercells in predicting elasticity of cubic
alloys via projecting out the closest cubic approximate of the elastic tensor.
The here described methodology is general enough to be applied in discussing
elasticity of substitutional alloys with any symmetry and at arbitrary
composition.Comment: Submitted to Physical Review
A selected history of expectation bias in physics
The beliefs of physicists can bias their results towards their expectations
in a number of ways. We survey a variety of historical cases of expectation
bias in observations, experiments, and calculations.Comment: 6 pages, 2 figure
Electromagnetic wave scattering by a superconductor
The interaction between radiation and superconductors is explored in this
paper. In particular, the calculation of a plane standing wave scattered by an
infinite cylindrical superconductor is performed by solving the Helmholtz
equation in cylindrical coordinates. Numerical results computed up to
of Bessel functions are presented for different wavelengths
showing the appearance of a diffraction pattern.Comment: 3 pages, 3 figure
Helicity, polarization, and Riemann-Silberstein vortices
Riemann-Silberstein (RS) vortices have been defined as surfaces in spacetime
where the complex form of a free electromagnetic field given by F=E+iB is null
(F.F=0), and they can indeed be interpreted as the collective history swept out
by moving vortex lines of the field. Formally, the nullity condition is similar
to the definition of "C-lines" associated with a monochromatic electric or
magnetic field, which are curves in space where the polarization ellipses
degenerate to circles. However, it was noted that RS vortices of monochromatic
fields generally oscillate at optical frequencies and are therefore
unobservable while electric and magnetic C-lines are steady. Here I show that
under the additional assumption of having definite helicity, RS vortices are
not only steady but they coincide with both sets of C-lines, electric and
magnetic. The two concepts therefore become one for waves of definite frequency
and helicity. Since the definition of RS vortices is relativistically invariant
while that of C-lines is not, it may be useful to regard the vortices as a
wideband generalization of C-lines for waves of definite helicity.Comment: 5 pages, no figures. Submitted to J of Optics A, special issue on
Singular Optics; minor changes from v.
The modalities of Iranian soft power: from cultural diplomacy to soft war
Through exploring Iran's public diplomacy at the international level, this article demonstrates how the Islamic Republic's motives should not only be contextualised within the oft-sensationalised, material or ‘hard’ aspects of its foreign policy, but also within the desire to project its cultural reach through ‘softer’ means. Iran's utilisation of culturally defined foreign policy objectives and actions demonstrates its understanding of soft power's potentialities. This article explores the ways in which Iran's public diplomacy is used to promote its soft power and craft its, at times, shifting image on the world stage
Quantum effects in the evolution of vortices in the electromagnetic field
We analyze the influence of electron-positron pairs creation on the motion of
vortex lines in electromagnetic field. In our approach the electric and
magnetic fields satisfy nonlinear equations derived from the Euler-Heisenberg
effective Lagrangian. We show that these nonlinearities may change the
evolution of vortices.Comment: REVTEX4 and 5 EPS figure
Optimal configuration of microstructure in ferroelectric materials by stochastic optimization
An optimization procedure determining the ideal configuration at the
microstructural level of ferroelectric (FE) materials is applied to maximize
piezoelectricity. Piezoelectricity in ceramic FEs differ significantly from
that of single crystals because of the presence of crystallites (grains)
possessing crystallographic axes aligned imperfectly. The piezoelectric
properties of a polycrystalline (ceramic) FE is inextricably related to the
grain orientation distribution (texture). The set of combination of variables,
known as solution space, which dictates the texture of a ceramic is unlimited
and hence the choice of the optimal solution which maximizes the
piezoelectricity is complicated. Thus a stochastic global optimization combined
with homogenization is employed for the identification of the optimal granular
configuration of the FE ceramic microstructure with optimum piezoelectric
properties. The macroscopic equilibrium piezoelectric properties of
polycrystalline FE is calculated using mathematical homogenization at each
iteration step. The configuration of grains characterised by its orientations
at each iteration is generated using a randomly selected set of orientation
distribution parameters. Apparent enhancement of piezoelectric coefficient
is observed in an optimally oriented BaTiO single crystal. A
configuration of crystallites, simultaneously constraining the orientation
distribution of the c-axis (polar axis) while incorporating ab-plane
randomness, which would multiply the overall piezoelectricity in ceramic
BaTiO is also identified. The orientation distribution of the c-axes is
found to be a narrow Gaussian distribution centred around . The
piezoelectric coefficient in such a ceramic is found to be nearly three times
as that of the single crystal.Comment: 11 pages, 7 figure
Full stress tensor measurement using colour centres in diamond
Stress and strain are important factors in determining the mechanical,
electronic, and optical properties of materials, relating to each other by the
material's elasticity or stiffness. Both are represented by second rank field
tensors with, in general, six independent components. Measurements of these
quantities are usually achieved by measuring a property that depends on the
translational symmetry and periodicity of the crystal lattice, such as optical
phonon energies using Raman spectroscopy, the electronic band gap using
cathodoluminescence, photoelasticity via the optical birefringence, or Electron
Back Scattering Diffraction (EBSD). A reciprocal relationship therefore exists
between the maximum sensitivity of the measurements and the spatial resolution.
Furthermore, of these techniques, only EBSD and off-axis Raman spectroscopy
allow measurement of all six components of the stress tensor, but neither is
able to provide full 3D maps. Here we demonstrate a method for measuring the
full stress tensor in diamond, using the spectral and optical polarization
properties of the photoluminescence from individual nitrogen vacancy (NV)
colour centres. We demonstrate a sensitivity of order 10 MPa, limited by local
fluctuations in the stress in the sample, and corresponding to a strain of
about 10^-5, comparable with the best sensitivity provided by other techniques.
By using the colour centres as built-in local sensors, the technique overcomes
the reciprocal relationship between spatial resolution and sensitivity and
offers the potential for measuring strains as small as 10^-9 at spatial
resolution of order 10 nm. Furthermore it provides a straightforward route to
volumetric stress mapping. Aside from its value in understanding strain
distributions in diamond, this new approach to stress and strain measurement
could be adapted for use in micro or nanoscale sensors.Comment: 12 pages, 5 figures - supplementary informations included in appendi
- …