3,686 research outputs found

    Assessment into the usage of levetiracetam in a canine epilepsy clinic

    Get PDF

    Bees. The Nursery

    Get PDF

    Comparison of Whole-Body Cooling Techniques for Athletes and Military Personnel

    Get PDF
    International Journal of Exercise Science 10(2): 294-300, 2017. The purpose of this study was to evaluate cooling rates of The Polar Life Pod®, a military protocol and cold water immersion. A randomized, repeated measures design was used to compare three treatment options. Participants exercised in an environmental chamber, where they followed a military march protocol on a treadmill, followed by the application of one of three treatments: Cold water immersion tub (5 – 10 °C), Polar Life Pod® (5 – 10 °C), Ice sheets at onset (5 – 10 °C). Mean cooling rate for CWI was 0.072 ºC/min, 0.046ºC/min for ice sheets, and 0.040ºC/min for The Polar Life Pod®. There was a significant difference between conditions (F2,26=13.564, p=0.001, ES=0.511, 1-β=0.969). There was a significant difference in cooling rate among The Polar Life Pod® and CWI (p = 0.006), and no significant difference among The Polar Life Pod® and Ice Sheets (p = 0.103). There was a significant difference of time to cool among the three conditions F2,26 = 13.564, p = 0.001 , ES = 0.401, 1-β = 0.950. Our results support multiple organizations that deem CWI as the only acceptable treatment, when compared to the cooling rates of The Polar Life Pod® and ice sheets

    Helicity, polarization, and Riemann-Silberstein vortices

    Full text link
    Riemann-Silberstein (RS) vortices have been defined as surfaces in spacetime where the complex form of a free electromagnetic field given by F=E+iB is null (F.F=0), and they can indeed be interpreted as the collective history swept out by moving vortex lines of the field. Formally, the nullity condition is similar to the definition of "C-lines" associated with a monochromatic electric or magnetic field, which are curves in space where the polarization ellipses degenerate to circles. However, it was noted that RS vortices of monochromatic fields generally oscillate at optical frequencies and are therefore unobservable while electric and magnetic C-lines are steady. Here I show that under the additional assumption of having definite helicity, RS vortices are not only steady but they coincide with both sets of C-lines, electric and magnetic. The two concepts therefore become one for waves of definite frequency and helicity. Since the definition of RS vortices is relativistically invariant while that of C-lines is not, it may be useful to regard the vortices as a wideband generalization of C-lines for waves of definite helicity.Comment: 5 pages, no figures. Submitted to J of Optics A, special issue on Singular Optics; minor changes from v.

    Index theorem for topological excitations on R^3 * S^1 and Chern-Simons theory

    Full text link
    We derive an index theorem for the Dirac operator in the background of various topological excitations on an R^3 \times S^1 geometry. The index theorem provides more refined data than the APS index for an instanton on R^4 and reproduces it in decompactification limit. In the R^3 limit, it reduces to the Callias index theorem. The index is expressed in terms of topological charge and the eta-invariant associated with the boundary Dirac operator. Neither topological charge nor eta-invariant is typically an integer, however, the non-integer parts cancel to give an integer-valued index. Our derivation is based on axial current non-conservation--an exact operator identity valid on any four-manifold--and on the existence of a center symmetric, or approximately center symmetric, boundary holonomy (Wilson line). We expect the index theorem to usefully apply to many physical systems of interest, such as low temperature (large S^1, confined) phases of gauge theories, center stabilized Yang-Mills theories with vector-like or chiral matter (at S^1 of any size), and supersymmetric gauge theories with supersymmetry-preserving boundary conditions (also at any S^1). In QCD-like and chiral gauge theories, the index theorem should shed light into the nature of topological excitations responsible for chiral symmetry breaking and the generation of mass gap in the gauge sector. We also show that imposing chirally-twisted boundary condition in gauge theories with fermions induces a Chern-Simons term in the infrared. This suggests that some QCD-like gauge theories should possess components with a topological Chern-Simons phase in the small S^1 regime.Comment: 29 pages, refs added, published versio

    Pollination (in Growing Alfalfa for Seed)

    Get PDF

    Suspected Pulmonary Metastasis of Actinic Cutaneous Squamous Cell Carcinoma

    Get PDF
    Introduction. It is rare for actinic or squamous cell carcinoma (SCC) in situ to metastasize. Case Presentation. A 67-year-old male had a significant medical history including severe psoriatic arthritis treated with UVB, methotrexate, and rapamycin. He had twenty-five different skin excisions of actinic keratosis four of which were invasive SCC. Our patient developed shortness of breath necessitating a visit to the emergency department. A CT scan of his chest revealed a mass in the right lower lung. A subsequent biopsy of the mass revealed well-differentiated SCC. He underwent thoracoscopic surgery with wedge resection of the lung lesion. Discussion. Actinic keratosis (AK) is considered precancerous and associated with UV exposure. It exists as a continuum of progression with low potential for malignancy. The majority of invasive SCCs are associated with malignant progression of AK, but only 5–10% of AKs will progress to malignant potential. Conclusion. In this case, a new finding of lung SCC in the setting of multiple invasive actinic cutaneous SCC associated with a history of extensive UV light exposure and immunosuppression supports a metastatic explanation for lung cancer

    Distance From the Apiary as a Factor in Alfalfa Pollination

    Get PDF
    Experiments conducted in northern Utah indicated that the distribution of honey bees (Apis mellifera L.) on an alfalfa field is modified by various influences besides distance from the colonies. Because of these other factors, generalizations concerning the effect of distance from colonies on the distribution of foraging honey bees cannot be made on the basis of experiments herein reported. A slight negative relationship between bee populations and distance from colonies in alfalfa fields was found in some of the experiments reported. In two fields where the distance was less than 600 feet, horizontal stratification of the field population was found only in the one with an average population of over two bees per square yard. The other field had less than one bee per square yard and no significant changes in population were observed up to 550 feet from the apiary. In another location bee populations decreased beyond 3,000 feet, but other variable factors on the field made it impossible to attribute these decreases solely to increasing distance from the apiary

    Optimal configuration of microstructure in ferroelectric materials by stochastic optimization

    Full text link
    An optimization procedure determining the ideal configuration at the microstructural level of ferroelectric (FE) materials is applied to maximize piezoelectricity. Piezoelectricity in ceramic FEs differ significantly from that of single crystals because of the presence of crystallites (grains) possessing crystallographic axes aligned imperfectly. The piezoelectric properties of a polycrystalline (ceramic) FE is inextricably related to the grain orientation distribution (texture). The set of combination of variables, known as solution space, which dictates the texture of a ceramic is unlimited and hence the choice of the optimal solution which maximizes the piezoelectricity is complicated. Thus a stochastic global optimization combined with homogenization is employed for the identification of the optimal granular configuration of the FE ceramic microstructure with optimum piezoelectric properties. The macroscopic equilibrium piezoelectric properties of polycrystalline FE is calculated using mathematical homogenization at each iteration step. The configuration of grains characterised by its orientations at each iteration is generated using a randomly selected set of orientation distribution parameters. Apparent enhancement of piezoelectric coefficient d33d_{33} is observed in an optimally oriented BaTiO3_3 single crystal. A configuration of crystallites, simultaneously constraining the orientation distribution of the c-axis (polar axis) while incorporating ab-plane randomness, which would multiply the overall piezoelectricity in ceramic BaTiO3_{3} is also identified. The orientation distribution of the c-axes is found to be a narrow Gaussian distribution centred around 45∘{45^\circ}. The piezoelectric coefficient in such a ceramic is found to be nearly three times as that of the single crystal.Comment: 11 pages, 7 figure
    • …
    corecore