81 research outputs found

    Overload Protection for CORBA Systems with Time Constraints

    Get PDF
    Scalable and reliable distributed object-oriented computing (DOC) middleware systems is an important technology in, for example, telecommunications service logic and distributed web servers. The Common Object Request Broker Architecture (CORBA), developed by the Object Management Group (OMG) is a speci cation of a common platform for DOC systems. CORBA acts as middleware, by inserting itself between the Operating System (OS) layer and the Application layer on a host. CORBA provides support for transparent interaction of objects situated on different nodes. The original CORBA specications had no support for timing constraints in applications and very little support in the terms of performance optimizations. Present extension to CORBA include support for real-time applications and a number of performance enhancements such as load balancing. However, no work so far address the issue of overload in a CORBA system. This paper presents a discussion of overload issues in distributed CORBA systems with time-constrained tasks. First a performance model of a CORBA system is introduced. Second, overload in distributed CORBA systems is discussed. Third, a number of classic overload protection mechanisms are applied to the performance model and investigated using simulation. The simulations show that even by using very simple protection mechanism, a good throughput can be achieved

    Simulation of a distributed CORBA-based SCP

    Get PDF
    This paper examines load balancing issues relating to a distributed CORBA-based Service Control Point. Two types of load balancing strategies are explored through simulation studies: (i) a novel ant-based load balancing algorithm, which has been devised specically for this type of system. This algorithm is compared to more traditional algorithms, (ii) a method for optimal distribution of the computational objects composing the service programs. This is based on mathematically minimising the expected communication ows between network nodes and message-level processing costs. The simulation model has been based on the recently adopted OMG IN/CORBA Interworking specication and the TINA Service Session computational object model

    Comparison of different methods in analyzing short-term air pollution effects in a cohort study of susceptible individuals

    Get PDF
    BACKGROUND: Short-term fluctuations of ambient air pollution have been associated with exacerbation of cardiovascular disease. A multi-city study was designed to assess the probability of recurrent hospitalization in a cohort of incident myocardial infarction survivors in five European cities. The objective of this paper is to discuss the methods for analyzing short-term health effects in a cohort study based on a case-series. METHODS: Three methods were considered for the analyses of the cohort data: Poisson regression approach, case-crossover analyses and extended Cox regression analyses. The major challenge of these analyses is to appropriately consider changes within the cohort over time due to changes in the underlying risk following a myocardial infarction, slow time trends in risk factors within the population, dynamic cohort size and seasonal variation. RESULTS: Poisson regression analyses, case-crossover analyses and Extended Cox regression analyses gave similar results. Application of smoothing methods showed the capability to adequately model the complex time trends. CONCLUSION: From a practical point of view, Poisson regression analyses are less time-consuming, and therefore might be used for confounder selection and most of the analyses. However, replication of the results with Cox models is desirable to assure that the results are independent of the analytical approach used. In addition, extended Cox regression analyses would allow a joint estimation of long-term and short-term health effects of time-varying exposures

    Interactions between Glutathione S-Transferase P1, Tumor Necrosis Factor, and Traffic-Related Air Pollution for Development of Childhood Allergic Disease

    Get PDF
    BACKGROUND: Air pollutants may induce airway inflammation and sensitization due to generation of reactive oxygen species. The genetic background to these mechanisms could be important effect modifiers. OBJECTIVE: Our goal was to assess interactions between exposure to air pollution and single nucleotide polymorphisms (SNPs) in the beta2-adrenergic receptor (ADRB2), glutathione S-transferase P1 (GSTP1), and tumor necrosis factor (TNF) genes for development of childhood allergic disease. METHODS: In a birth cohort originally of 4,089 children, we assessed air pollution from local traffic using nitrogen oxides (traffic NO(x)) as an indicator based on emission databases and dispersion modeling and estimated individual exposure through geocoding of home addresses. We measured peak expiratory flow rates and specific IgE for inhalant and food allergens at 4 years of age, and selected children with asthma symptoms up to 4 years of age (n = 542) and controls (n = 542) for genotyping. RESULTS: Interaction effects on allergic sensitization were indicated between several GSTP1 SNPs and traffic NO(x) exposure during the first year of life (p(nominal) < 0.001-0.06). Children with Ile105Val/Val105Val genotypes were at increased risk of sensitization to any allergen when exposed to elevated levels of traffic NO(x) (for a difference between the 5th and 95th percentile of exposure: odds ratio = 2.4; 95% confidence interval, 1.0-5.3). In children with TNF-308 GA/AA genotypes, the GSTP1-NO(x) interaction effect was even more pronounced. We observed no conclusive interaction effects for ADRB2. CONCLUSION: The effect of air pollution from traffic on childhood allergy appears to be modified by GSTP1 and TNF variants, supporting a role of genes controlling the antioxidative system and inflammatory response in allergy

    Self-assembly of mechanoplasmonic bacterial cellulose-metal nanoparticle composites

    Get PDF
    Nanocomposites of metal nanoparticles (NPs) and bacterial nanocellulose (BC) enable fabrication of soft and biocompatible materials for optical, catalytic, electronic, and biomedical applications. Current BC-NP nanocomposites are typically prepared by in situ synthesis of the NPs or electrostatic adsorption of surface functionalized NPs, which limits possibilities to control and tune NP size, shape, concentration, and surface chemistry and influences the properties and performance of the materials. Here a self-assembly strategy is described for fabrication of complex and well-defined BC-NP composites using colloidal gold and silver NPs of different sizes, shapes, and concentrations. The self-assembly process results in nanocomposites with distinct biophysical and optical properties. In addition to antibacterial materials and materials with excellent senor performance, materials with unique mechanoplasmonic properties are developed. The homogenous incorporation of plasmonic gold NPs in the BC enables extensive modulation of the optical properties by mechanical stimuli. Compression gives rise to near-field coupling between adsorbed NPs, resulting in tunable spectral variations and enhanced broadband absorption that amplify both nonlinear optical and thermoplasmonic effects and enables novel biosensing strategies
    corecore