90 research outputs found

    Are the causes of bank distress changing? can researchers keep up?

    Get PDF
    Since 1990, the banking sector has experienced enormous legislative, technological, and financial changes, yet research into the causes of bank distress has slowed. One consequence is that traditional supervisory surveillance models may not capture important risks inherent in the current banking environment. After reviewing the history of these models, the authors provide empirical evidence that the characteristics of failing banks have changed in the past ten years and argue that the time is right for new research that employs new empirical techniques. In particular, dynamic models that use forward-looking variables and address various types of bank risk individually are promising lines of inquiry. Supervisory agencies have begun to move in these directions, and the authors describe several examples of this new generation of early-warning models that are not yet widely known among academic banking economists.Bank supervision ; Risk management

    Hash Functions for Episodic Recognition and Retrieval

    Get PDF
    Episodic memory systems for artificially intelligent agents must cope with an ever-growing episodic memory store. This paper presents an approach for minimizing the size of the store by using specialized hash functions to convert each memory into a relatively short binary code. A set of desiderata for such hash functions are presented including locale sensitivity and reversibility. The paper then introduces multiple approaches for such functions and compares their effectiveness

    A dexamethasone prodrug reduces the renal macrophage response and provides enhanced resolution of established murine lupus nephritis

    Get PDF
    We evaluated the ability of a macromolecular prodrug of dexamethasone (P-Dex) to treat lupus nephritis in (NZB × NZW)F1 mice. We also explored the mechanism underlying the anti-inflammatory effects of this prodrug. P-Dex eliminated albuminuria in most (NZB × NZW)F1 mice. Furthermore, P-Dex reduced the incidence of severe nephritis and extended lifespan in these mice. P-Dex treatment also prevented the development of lupus-associated hypertension and vasculitis. Although P-Dex did not reduce serum levels of anti-dsDNA antibodies or glomerular immune complexes, P-Dex reduced macrophage recruitment to the kidney and attenuated tubulointerstitial injury. In contrast to what was observed with free dexamethasone, P-Dex did not induce any deterioration of bone quality. However, P-Dex did lead to reduced peripheral white blood cell counts and adrenal gland atrophy. These results suggest that P-Dex is more effective and less toxic than free dexamethasone for the treatment of lupus nephritis in (NZB × NZW)F1 mice. Furthermore, the data suggest that P-Dex may treat nephritis by attenuating the renal inflammatory response to immune complexes, leading to decreased immune cell infiltration and diminished renal inflammation and injury

    Enhancement strategies for transdermal drug delivery systems: current trends and applications

    Get PDF

    Integration of hydrogels with hard and soft microstructures

    Get PDF
    Hydrogels, i.e., water-swollen polymer networks, have been studied and utilized for decades. These materials can either passively support mass transport, or can actively respond in their swelling properties, enabling modulation of mass and fluid transport, and chemomechanical actuation. Response rates increase with decreasing hydrogel dimension. In this paper, we present three examples where incorporation of hydrogels into solid microstructures permits acceleration of their response, and also provides novel functional capabilities. In the first example, a hydrogel is immobilized inside microfabricated pores within a thin silicon membrane. This hydrogel does not have a swelling response under the conditions investigated, but under proper conditions it can be utilized as a part of an electrolytic diode. In the second example, hydrogels are polymerized under microcantilever beams, and their swelling response to pH or glucose concentration causes variable deflection of the beam, observable under a microscope. In the third example, swelling and shrinking of a hydrogel embedded in a microfabricated valve structure leads to chemical gating of fluid motion through that valve. In all cases, the small size of the system enhances its response rate
    corecore