168 research outputs found

    Adaptive reuse of Libre software systems for supporting on-line collaboration

    Get PDF
    In this paper, the adaptive reuse of Plone; an open source content management system is described. In one instance, Plone has been used as the backbone of a collaboration and communication support infrastructure within a large research project. In the other, Plone has been used as the main web-presence of a specialist group of the British Computer Society. This paper analyses the benefits and problems of reusing Plone to support collaboration. Based on this reuse experience, a more systematic approach to supporting Plone reuse is proposed. This approach takes into account the special case of reuse support relevant to open source software developments

    Using open source tools to support collaboration within CALIBRE

    Get PDF
    Abstract – This paper describes the deployment of Plone, an Open-Source content management system, to support the activities of CALIBRE, an EU-funded coordination action integrating research into Libre software. The criteria by which Plone was selected are described, and the goodness of fit to these criteria is analysed. As a coordination action, CALIBRE involves 12 partners with different requirements and characteristics. The CALIBRE Working Environment (CWE) must therefore support a variety of users with different levels of technical expertise and expectations. Implementation of the support infrastructure for CALIBRE is ongoing, and has provided some interesting insights into the benefits of the use of libre software. Although Plone has not been explicitly developed as a collaboration infrastructure, with its wealth of plugins, it has proven highly adaptable for this purpose

    Evaluation of the 29-km Eta Model. Part I: Objective Verification at Three Selected Stations

    Get PDF
    A subjective evaluation of the National Centers for Environmental Prediction 29-km (meso-) eta model during the 1996 warm (May-August) and cool (October-January) seasons is described. The overall evaluation assessed the utility of the model for operational weather forecasting by the U.S. Air Force 45th Weather Squadron, National Weather Service (NWS) Spaceflight Meteorology Group (SMG) and NWS Office in Melbourne, FL

    Quantifying the Feeding Periods Required by Corn Flea Beetles to Acquire and Transmit Pantoea stewartii

    Get PDF
    The feeding periods required by corn flea beetles to acquire and transmit Pantoea stewartii were investigated in the Stewart\u27s disease of corn pathosystem. To quantify the effect of acquisition feeding period on percentage of acquisition, field-collected corn beetles were allowed to feed for 6, 12, 24 36, 48, and 72 h on corn seedlings previously inoculated with a rifampicin- and nalidixic acid-restraint strain of P. stewartii. Acquisition of P. stewartii by corn flea beetles was considered positive if the rifampicin- and nalidixic acid-marked strain was recovered on selective media. To quantity the effect of transmission feeding period on percent transmission of P. stewartii by corn flea beetles, P. stewartii- infested corn flea beetles were allowed to feed on healthy corn seedlings for periods of 3, 6, 12, 24, 36, 48, and 72 h. After the appropriate transmission feeding period, leaf tissues surrounding the sites of feeding scars were cultured for the presence of the P. stewartii-marked strain. Transmission of P. stewartii was considered positive if the marked strain was recovered on selective media. Acquisition of P. stewartii occurred within 6 h and the percentage of corn flea beetles that had acquired P. stewartii after 72 h ranged from 68 to 94%. The change in P. stewartiiacquisition by corn flea beetles (Y) with respect to acquisition feeding period (X) was best described by the Gompertz model, with R2 values ranging from 91 to 99%. The mean time for acquisition by 50% of the corn flea beetles was 36.5 ± 11.6 h. The minimum transmission feeding time required for corn flea beetles to transmit P. stewartii following a 48-h acquisition feeding period was less than 3 h. The percent transmission of P. stewartii by corn flea beetles was nearly 100% after a 48-h transmission feeding period and was 100% by 72 h. Among population growth models evaluated, the monomolecular model best described the relationship between percent transmission (Y) and transmission feeding periods (X), with R 2 values of up to 84%. However, a nonlinear form of the monomolecular model better quantified the relationship between percent transmission and transmission feeding period, because pseudo-R2 values ranged between 98.1 and 99.5%. The predicted transmission feeding time required for 50% of P. stewartii-infested corn flea beetles to transmit the pathogen was 7.6 ± 0.87 h. These results suggest that the corn flea beetle is a highly efficient vector that can quickly acquire and transmit P. stewartii, thereby requiring insecticide seed treatments and foliar insecticides that act quickly to prevent corn flea beetles from acquiring and transmitting P. stewartii to corn plants

    Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    Get PDF
    The Applied Meteorology Unit (AMU) conducted a year-long evaluation of NCEP's 29-km mesoscale Eta (meso-eta) weather prediction model in order to identify added value to forecast operations in support of the United States space program. The evaluation was stratified over warm and cool seasons and considered both objective and subjective verification methodologies. Objective verification results generally indicate that meso-eta model point forecasts at selected stations exhibit minimal error growth in terms of RMS errors and are reasonably unbiased. Conversely, results from the subjective verification demonstrate that model forecasts of developing weather events such as thunderstorms, sea breezes, and cold fronts, are not always as accurate as implied by the seasonal error statistics. Sea-breeze case studies reveal that the model generates a dynamically-consistent thermally direct circulation over the Florida peninsula, although at a larger scale than observed. Thunderstorm verification reveals that the meso-eta model is capable of predicting areas of organized convection, particularly during the late afternoon hours but is not capable of forecasting individual thunderstorms. Verification of cold fronts during the cool season reveals that the model is capable of forecasting a majority of cold frontal passages through east central Florida to within +1-h of observed frontal passage

    An Extended Objective Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    Get PDF
    This report describes the Applied Meteorology Unit's objective verification of the National Centers for Environmental Prediction 29-km eta model during separate warm and cool season periods from May 1996 through January 1998. The verification of surface and upper-air point forecasts was performed at three selected stations important for 45th Weather Squadron, Spaceflight Meteorology Group, and National Weather Service, Melbourne operational weather concerns. The statistical evaluation identified model biases that may result from inadequate parameterization of physical processes. Since model biases are relatively small compared to the random error component, most of the total model error results from day-to-day variability in the forecasts and/or observations. To some extent, these nonsystematic errors reflect the variability in point observations that sample spatial and temporal scales of atmospheric phenomena that cannot be resolved by the model. On average, Meso-Eta point forecasts provide useful guidance for predicting the evolution of the larger scale environment. A more substantial challenge facing model users in real time is the discrimination of nonsystematic errors that tend to inflate the total forecast error. It is important that model users maintain awareness of ongoing model changes. Such changes are likely to modify the basic error characteristics, particularly near the surface

    Site-Specific Risk Factors for Ray Blight in Tasmanian Pyrethrum Fields

    Get PDF
    Ray blight of pyrethrum (Tanacetum cinerariifolium), caused by Phoma ligulicola var. inoxydablis, can cause defoliation and reductions of crop growth and pyrethrin yield. Logistic regression was used to model relationships among edaphic factors and interpolated weather variables associated with severe disease outbreaks (i.e., defoliation severity ≥40%). A model for September defoliation severity included a variable for the product of number of days with rain of at least 0.1 mm and a moving average of maximum temperatures in the last 14 days, which correctly classified (accuracy) the disease severity class for 64.8% of data sets. The percentage of data sets where disease severity was correctly classified as at least 40% defoliation severity (sensitivity) or below 40% defoliation severity (specificity) were 55.8 and 71%, respectively. A model for October defoliation severity included the number of days with at least 1 mm of rain in the past 14 days, stem height in September, and the product of the number of days with at least 10 mm of rain in the last 30 days and September defoliation severity. Accuracy, sensitivity, and specificity were 72.6, 73.6, and 71.4%, respectively. Youden\u27s index identified predictive thresholds of 0.25 and 0.57 for the September and October models, respectively. When economic considerations of the costs of false positive and false negative decisions and disease prevalence were integrated into receiver operating characteristic (ROC) curves for the October model, the optimal predictive threshold to minimize average management costs was 0 for values of disease prevalence greater than 0.2 due to the high cost of false negative predictions. ROC curve analysis indicated that management of the disease should be routine when disease prevalence is greater than 0.2. The models developed in this research are the first steps toward identifying and weighting site and weather disease risk variables to develop a decision-support aid for the management of ray blight of pyrethrum

    The Effect of Reiki on the Autonomic Nervous System as Measured by Entrainment Ratios of Heart Rate Variability

    Get PDF
    The purpose of this study was to use the popular energy healing modality known as Reiki to reduce measurably the level of stress in a recipient. Specifically, the Reiki treatments would target an dement of the recipient's autonomic nervous system (ANS), namely the heart, and use heart rate variability (HRV) to measure the of the amount of stress reduction resulting from the Reiki treatments. The goal was to cause a change in the recipient's HRV, which is theoretically not under the subject's willful control, by a statistically significant amount, ideally to a "healthier level" from that experienced when Reiki was not applied
    • …
    corecore