398 research outputs found
Patchy He II reionization and the physical state of the IGM
We present a Monte-Carlo model of He II reionization by QSOs and its effect
on the thermal state of the clumpy intergalactic medium (IGM). The model
assumes that patchy reionization develops as a result of the discrete
distribution of QSOs. It includes various recipes for the propagation of the
ionizing photons, and treats photo-heating self-consistently. The model
provides the fraction of He III, the mean temperature in the IGM, and the He II
mean optical depth -- all as a function of redshift. It also predicts the
evolution of the local temperature versus density relation during reionization.
Our findings are as follows: The fraction of He III increases gradually until
it becomes close to unity at . The He II mean optical depth
decreases from at to at .
The mean temperature rises gradually between and and
declines slowly at lower redshifts. The model predicts a flattening of the
temperature-density relation with significant increase in the scatter during
reionization at . Towards the end of reionization the scatter is
reduced and a tight relation is re-established. This scatter should be
incorporated in the analysis of the Ly forest at . Comparison
with observational results of the optical depth and the mean temperature at
moderate redshifts constrains several key physical parameters.Comment: 18 pages, 9 figures; Changed content. Accepted for publication in
MNRA
A direct probe of cosmological power spectra of the peculiar velocity field and the gravitational lensing magnification from photometric redshift surveys
The cosmological peculiar velocity field (deviations from the pure Hubble
flow) of matter carries significant information on dark energy, dark matter and
the underlying theory of gravity on large scales. Peculiar motions of galaxies
introduce systematic deviations between the observed galaxy redshifts z and the
corresponding cosmological redshifts z_cos. A novel method for estimating the
angular power spectrum of the peculiar velocity field based on observations of
galaxy redshifts and apparent magnitudes m (or equivalently fluxes) is
presented. This method exploits the fact that a mean relation between z_cos and
m of galaxies can be derived from all galaxies in a redshift-magnitude survey.
Given a galaxy magnitude, it is shown that the z_cos(m) relation yields its
cosmological redshift with a 1-sigma error of sigma_z~0.3 for a survey like
Euclid (~10^9 galaxies at z<~2), and can be used to constrain the angular power
spectrum of z-z_cos(m) with a high signal-to-noise ratio. At large angular
separations corresponding to l<~15, we obtain significant constraints on the
power spectrum of the peculiar velocity field. At 15<~l<~60, magnitude shifts
in the z_cos(m) relation caused by gravitational lensing magnification
dominate, allowing us to probe the line-of-sight integral of the gravitational
potential. Effects related to the environmental dependence in the luminosity
function can easily be computed and their contamination removed from the
estimated power spectra. The amplitude of the combined velocity and lensing
power spectra at z~1 can be measured with <~5% accuracy.Comment: 22 pages, 3 figures; added a discussion of systematic errors,
accepted for publication in JCA
Dark Energy and Dark Matter in Galaxy Halos
We consider the possibility that the dark matter is coupled through its mass
to a scalar field associated with the dark energy of the Universe. In order for
such a field to play a role at the present cosmological distances, it must be
effectively massless at galactic length scales. We discuss the effects of the
field on the distribution of dark matter in galaxy halos. We show that the
profile of the distribution outside the galaxy core remains largely unaffected
and the approximately flat rotation curves persist. The dispersion of the dark
matter velocity is enhanced by a potentially large factor relative to the case
of zero coupling between dark energy and dark matter. The counting rates in
terrestrial dark matter detectors are similarly enhanced. Existing bounds on
the properties of dark matter candidates can be extended to the coupled case,
by taking into account the enhancement factor.Comment: 7 pages, 1 figure, references added and discussion expande
Non-uniform reionization by galaxies and its effect on the cosmic microwave background
We present predictions for the reionization of the intergalactic medium (IGM) by stars in high-redshift galaxies, based on a semi-analytic model of galaxy formation. We calculate ionizing luminosities of galaxies, including the effects of absorption by interstellar gas and dust on the escape fraction ƒesc, and follow the propagation of the ionization fronts around each galaxy in order to calculate the filling factor of ionized hydrogen in the IGM. For a ΛCDM cosmology, with parameters of the galaxy formation model chosen to match observations of present-day galaxies, and a physical calculation of the escape fraction, we find that the hydrogen in the IGM will be reionized at redshift z=6.1 if the IGM has uniform density, but only by z=4.5 if the IGM is clumped. If instead we assume a constant escape fraction of 20 per cent for all galaxies, then we find reionization at z=4.5 and 7.8 for the same two assumptions about IGM clumping. We combine our semi-analytic model with an N-body simulation of the distribution of dark matter in the Universe in order to calculate the evolution of the spatial and velocity distribution of the ionized gas in the IGM, and use this to calculate the secondary temperature anisotropies induced in the cosmic microwave background (CMB) by scattering off free electrons. The models predict a spectrum of secondary anisotropies covering a broad range of angular scales, with fractional temperature fluctuations ∼10−7-10−6 on arcminute scales. The amplitude depends strongly on the total baryon density, and less sensitively on ƒesc. The amplitude also depends somewhat on the geometry of reionization, with models in which the regions of highest gas density are reionized first giving larger CMB fluctuations than the case where galaxies ionize surrounding spherical regions, and models where low-density regions reionize first giving the smallest fluctuations. Measurement of these anisotropies can therefore put important constraints on the reionization process, in particular, the redshift evolution of the filling factor, and should be a primary objective of a next generation submillimetre telescope such as the Atacama Large Millimeter Array
Redshift space 21 cm power spectra from reionization
We construct a simple but self-consistent analytic ionization model for rapid
exploration of 21cm power spectrum observables in redshift space. It is fully
described by the average ionization fraction and HII patch size
and has the flexibility to accommodate various reionization scenarios. The
model associates ionization regions with dark matter halos of the number
density required to recover and treats redshift space distortions
self-consistently with the virial velocity of such halos. Based on this model,
we study the line-of-sight structures in the brightness fluctuations since they
are the most immune to foreground contamination. We explore the degeneracy
between the HII patch size and nonlinear redshift space distortion in the one
dimensional power spectrum. We also discuss the limitations experimental
frequency and angular resolutions place on their distinguishability. Angular
resolution dilutes even the radial signal and will be a serious limitation for
resolving small bubbles before the end of reionization. Nonlinear redshift
space distortions suggest that a resolution of order 1 -- 10\arcsec and a
frequency resolution of 10kHz will ultimately be desirable to extract the full
information in the radial field at . First generation instruments
such as LOFAR and MWA can potentially measure radial HII patches of a few
comoving Mpc and larger at the end of reionization and are unlikely to be
affected by nonlinear redshift space distortions.Comment: 13 pages, 10 figures. Revised version. Includes minor changes. Adds
appendix on accomodating a distribution of radii for the HII regions.
Accepted for publication in Ap
Large scale motions in superclusters: their imprint in the CMB
We identify high density regions of supercluster size in high resolution
N-body simulations of a representative volume of three Cold Dark Matter
Universes. By assuming that (1) the density and peculiar velocities of baryons
trace those of the dark matter, and (2) the temperature of plasma is
proportional to the velocity dispersion of the dark matter particles in regions
where the crossing times is smaller than the supercluster free-fall time, we
investigate how thermal motions of electrons in the intra-cluster medium and
peculiar velocity of clusters can affect the secondary anisotropies in the
cosmic microwave background (CMB). We show that the thermal effect dominates
the kinematic effect and that the largest thermal decrements are associated
with the most massive clusters in superclusters. Thus, searching for the
presence of two or more close large CMB decrements represents a viable strategy
for identifying superclusters at cosmological distances. Moreover, maps of the
kinematic effect in superclusters are characterized by neighboring large peaks
of opposite signs. These peaks can be as high as ~ 10 microK at the arcminute
angular resolution. Simultaneous pointed observations of superclusters in the
millimeter and submillimeter bands with upcoming sensitive CMB experiments can
separate between the thermal and kinematic effect contributions and constrain
the evolution of the velocity field in large overdense regions.Comment: 4 pages, 5 figures, ApJ Letters, in press; revised version according
to referee's comment
APPLICABILITY OF A FULL BODY INERTIAL MEASUREMENT SYSTEM FOR KINEMATIC ANALYSIS OF THE DISCUS THROW
The aim of the study was the application of a full body inertial measurement system (IMS) for a kinematic analysis of the discus throw and the evaluation of its applicability. For this purpose, one male sports student performed three discus throws equipped with the IMS. All trials were additionally filmed by high-speed video. The results indicate that perfor-mance-relevant information can be obtained regarding the temporal coordination of the body segments and body joint angles. Limitations exist for the accurate detection of the last foot contact related instant and the discus release instant by solely using the IMS data
Early reionization by decaying particles in the light of three year WMAP data
We study the reionization histories where ionizing UV photons are emitted
from decaying particles, in addition to usual contributions from stars and
quasars, taking account of the fact that the universe is not fully ionized
until z = 6 as observed by Sloan Digital Sky Survey. Likelihood analysis of the
three-year data from the WMAP (Wilkinson Microwave Anisotropy Probe) severely
constrains the decaying particle scenario.In particular, the decaying particle
with relatively short lifetime is not favored by the polarization data.Comment: 9 pages, 11 figure
Comparison of the ENEAR Peculiar Velocities with the PSCz Gravity Field
We present a comparison between the peculiar velocity field measured from the ENEAR all-sky Dn−σ catalogue and that derived from the galaxy distribution of the IRAS Point Source Catalog Redshift Survey (PSCz). The analysis is based on a modal expansion of these data in redshift space by means of spherical harmonics and Bessel functions. The effective smoothing scale of the expansion is almost linear with redshift reaching 1500kms−1 at 3000kms−1. The general flow patterns in the filtered ENEAR and PSCz velocity fields agree well within 6000kms−1, assuming a linear biasing relation between the mass and the PSCz galaxies. The comparison allows us to determine the parameter β = Ω0.6 / b, where Ω is the cosmological density parameter and b is the linear biasing factor. A likelihood analysis of the ENEAR and PSCz modes yields β = 0.5 ± 0.1, in good agreement with values obtained from Tully-Fisher surveys
Comparison of the ENEAR Peculiar Velocities with the PSCz Gravity Field
We present a comparison between the peculiar velocity field measured from the
ENEAR all-sky catalog and that derived from the galaxy
distribution of the IRAS PSCz redshift survey. The analysis is based on a modal
expansion of these data in redshift space by means of spherical harmonics and
Bessel functions. The effective smoothing scale of the expansion is almost
linear with redshift reaching 1500km/s at 3000km/s. The general flow patterns
in the filtered ENEAR and PSCz velocity fields agree well within 6000km/s,
assuming a linear biasing relation between the mass and the PSCz galaxies. The
comparison allows us to determine the parameter , where
is the cosmological density parameter and is the linear biasing
factor. A likelihood analysis of the ENEAR and PSCz modes yields , in good agreement with values obtained from Tully-Fisher surveys.Comment: Submitted to MNRA
- …