112 research outputs found

    Human CD8+T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice

    Get PDF
    A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo

    Cross-protection between attenuated Plasmodium berghei and P. yoelii sporozoites

    Get PDF
    An attenuatedPlasmodium falciparum sporozoite (PfSPZ) vaccine is under development, in part, based on studies in mice withP. berghei. We usedP. berghei andP. yoelii to study vaccine-induced protection against challenge with a species of parasite different from the immunizing parasite in BALB/c mice. One-hundred percent of mice were protected against homologous challenge. Seventy-nine percent immunized with attenuatedP. berghei sporozoite (PbSPZ)(six experiments) were protected against challenge withP. yoelii sporozoite (PySPZ), and 63% immunized with attenuatedPySPZ(three experiments) were protected against challenge withPbSPZ. Antibodies in sera of immunized mice only recognized homologous sporozoites and could not have mediated protection against heterologous challenge. Immunization with attenuatedPySPZ orPbSPZ induced CD8+ T cell-dependent protection against heterologous challenge. Immunization with attenuatedPySPZ induced CD8+ T cell-dependent protection against homologous challenge. However, homologous protection induced by attenuatedPbSPZ was not dependent on CD8+ or CD4+ T cells, and depletion of both populations only reduced protection by 36%. Immunization of C57BL/10 mice withPbSPZ induced CD8+ T cell-dependent protection againstP. berghei, but no protection againstP. yoelii. The cross-protection data in BALB/c mice support testing a human vaccine based on attenuatedPfSPZ for its efficacy againstP. vivax

    Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites

    Get PDF
    Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these “whole-parasite” vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines

    Protective CD8+ T lymphocytes in Primates Immunized with Malaria Sporozoites

    Get PDF
    Live attenuated malaria vaccines are more potent than the recombinant protein, bacterial or viral platform vaccines that have been tested, and an attenuated sporozoite vaccine against falciparum malaria is being developed for humans. In mice, attenuated malaria sporozoite vaccines induce CD8+ T cells that kill parasites developing in the liver. We were curious to know if CD8+ T cells were also important in protecting primates against malaria. We immunized 9 rhesus monkeys with radiation attenuated Plasmodium knowlesi sporozoites, and found that 5 did not develop blood stage infections after challenge with live sporozoites. We then injected 4 of these protected monkeys with cM-T807, a monoclonal antibody to the CD8 molecule which depletes T cells. The fifth monkey received equivalent doses of normal IgG. In 3 of the 4 monkeys receiving cM-T807 circulating CD8+ T cells were profoundly depleted. When re-challenged with live sporozoites all 3 of these depleted animals developed blood stage malaria. The fourth monkey receiving cM-T807 retained many circulating CD8+ T cells. This monkey, and the vaccinated monkey receiving normal IgG, did not develop blood stage malaria at re-challenge with live sporozoites. Animals were treated with antimalarial drugs and rested for 4 months. During this interval CD8+ T cells re-appeared in the circulation of the depleted monkeys. When all vaccinated animals received a third challenge with live sporozoites, all 5 monkeys were once again protected and did not develop blood stage malaria infections. These data indicate that CD8+ T cells are important effector cells protecting monkeys against malaria sporozoite infection. We believe that malaria vaccines which induce effector CD8+ T cells in humans will have the best chance of protecting against malaria

    Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with Plasmodium berghei

    Get PDF
    BACKGROUND: The Plasmodium protein Cell-traversal protein for ookinetes and sporozoites (CelTOS) plays an important role in cell traversal of host cells in both, mosquito and vertebrates, and is required for successful malaria infections. CelTOS is highly conserved among the Plasmodium species, suggesting an important functional role across all species. Therefore, targeting the immune response to this highly conserved protein and thus potentially interfering with its biological function may result in protection against infection even by heterologous species of Plasmodium. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we developed a recombinant codon-harmonized P. falciparum CelTOS protein that can be produced to high yields in the E. coli expression system. Inbred Balb/c and outbred CD-1 mice were immunized with various doses of the recombinant protein adjuvanted with Montanide ISA 720 and characterized using in vitro and in vivo analyses. CONCLUSIONS/SIGNIFICANCE: Immunization with PfCelTOS resulted in potent humoral and cellular immune responses and most importantly induced sterile protection against a heterologous challenge with P. berghei sporozoites in a proportion of both inbred and outbred mice. The biological activity of CelTOS-specific antibodies against the malaria parasite is likely linked to the impairment of sporozoite motility and hepatocyte infectivity. The results underscore the potential of this antigen as a pre-erythrocytic vaccine candidate and demonstrate for the first time a malaria vaccine that is cross-protective between species

    Dendritic Cells and Hepatocytes Use Distinct Pathways to Process Protective Antigen from Plasmodium in vivo

    Get PDF
    Malaria-protective CD8+ T cells specific for the circumsporozoite (CS) protein are primed by dendritic cells (DCs) after sporozoite injection by infected mosquitoes. The primed cells then eliminate parasite liver stages after recognizing the CS epitopes presented by hepatocytes. To define the in vivo processing of CS by DCs and hepatocytes, we generated parasites carrying a mutant CS protein containing the H-2Kb epitope SIINFEKL, and evaluated the T cell response using transgenic and mutant mice. We determined that in both DCs and hepatocytes CS epitopes must reach the cytosol and use the TAP transporters to access the ER. Furthermore, we used endosomal mutant (3d) and cytochrome c treated mice to address the role of cross-presentation in the priming and effector phases of the T cell response. We determined that in DCs, CS is cross-presented via endosomes while, conversely, in hepatocytes protein must be secreted directly into the cytosol. This suggests that the main targets of protective CD8+ T cells are parasite proteins exported to the hepatocyte cytosol. Surprisingly, however, secretion of the CS protein into hepatocytes was not dependent upon parasite-export (Pexel/VTS) motifs in this protein. Together, these results indicate that the presentation of epitopes to CD8+ T cells follows distinct pathways in DCs when the immune response is induced and in hepatocytes during the effector phase

    Prolonged Antigen Presentation Is Required for Optimal CD8+ T Cell Responses against Malaria Liver Stage Parasites

    Get PDF
    Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization—a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen

    A Role for Immune Responses against Non-CS Components in the Cross-Species Protection Induced by Immunization with Irradiated Malaria Sporozoites

    Get PDF
    Immunization with irradiated Plasmodium sporozoites induces sterile immunity in rodents, monkeys and humans. The major surface component of the sporozoite the circumsporozoite protein (CS) long considered as the antigen predominantly responsible for this immunity, thus remains the leading candidate antigen for vaccines targeting the parasite's pre-erythrocytic (PE) stages. However, this role for CS was questioned when we recently showed that immunization with irradiated sporozoites (IrrSpz) of a P. berghei line whose endogenous CS was replaced by that of P. falciparum still conferred sterile protection against challenge with wild type P. berghei sporozoites. In order to investigate the involvement of CS in the cross-species protection recently observed between the two rodent parasites P. berghei and P. yoelii, we adopted our gene replacement approach for the P. yoelii CS and exploited the ability to conduct reciprocal challenges. Overall, we found that immunization led to sterile immunity irrespective of the origin of the CS in the immunizing or challenge sporozoites. However, for some combinations, immune responses to CS contributed to the acquisition of protective immunity and were dependent on the immunizing IrrSpz dose. Nonetheless, when data from all the cross-species immunization/challenges were considered, the immune responses directed against non-CS parasite antigens shared by the two parasite species played a major role in the sterile protection induced by immunization with IrrSpz. This opens the perspective to develop a single vaccine formulation that could protect against multiple parasite species

    Immunological mechanisms underlying protection mediated by RTS,S: a review of the available data

    Get PDF
    The RTS,S/AS candidate malaria vaccine has demonstrated efficacy against a variety of endpoints in Phase IIa and Phase IIb trials over more than a decade. A multi-country phase III trial of RTS,S/AS01 is now underway with submission as early as 2012, if vaccine safety and efficacy are confirmed. The immunologic basis for how the vaccine protects against both infection and disease remains uncertain. It is, therefore, timely to review the information currently available about the vaccine with regard to how it impacts the human-Plasmodium falciparum host-pathogen relationship. In this article, what is known about mechanisms involved in partial protection against malaria induced by RTS,S is reviewed

    CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria

    Get PDF
    To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections
    corecore