575 research outputs found

    Functional Consequences of Compartmentalization of Synaptic Input

    Get PDF
    Intra-axonal recordings of stomatogastric nerve axon 1 (SNAX1) indicate that there are synaptic inputs onto the SNAX1 terminals in the stomatogastric ganglion (STG) of the crab Cancer borealis (Nusbaum et al., 1992b). To determine whether this synaptic input only influenced SNAX1 activity within the STG, we identified the SNAX1 soma in the commissural ganglion (CoG). We found that this neuron has a neuropilar arborization in the CoG and also receives synaptic inputs in this ganglion. Based on its soma location, we have renamed this neuron modulatory commissural neuron 1 (MCN1). While intracellular stimulation of MCN1soma and MCN1SNAX has the same excitatory effects on the STG motor patterns, MCN1 receives distinct synaptic inputs in the STG and CoG. Moreover, the synaptic input that MCN1 receives within the STG compartmentalizes its activity. Specifically, the lateral gastric (LG) neuron synaptically inhibits MCN1SNAX-initiated activity within the STG (Nusbaum et al., 1992b), and while LG did not inhibit MCN1soma- initiated activity in the CoG, it did inhibit these MCN1 impulses when they arrived in the STG. As a result, during MCN1soma-elicited gastric mill rhythms, MCN1soma is continually active in the CoG but its effects are rhythmically inhibited in the STG by LG neuron impulse bursts. One functional consequence of this local control of MCN1 within the STG is that the LG neuron thereby controls the timing of the impulse bursts in other gastric mill neurons. Thus, local synaptic input can functionally compartmentalize the activity of a neuron with arbors in distinct regions of the nervous system

    Neuropeptide Degradation Produces Functional Inactivation in the Crustacean Nervous System

    Get PDF
    The pentapeptide proctolin (Proct.; Arg-Tyr-Leu-Pro-Thr) is a modulatory transmitter found throughout the crustacean nervous system. No information is available in this system, however, as to how the actions of this peptide are terminated. To study this issue in the crab Cancer borealis, we incubated exogenous proctolin (10(-5) M) with either the thoracic ganglion (TG) or with conditioned saline (CS) that had been preincubated with the TG. We removed aliquots at standard time points for analysis by reverse-phase high-performance liquid chromatography (HPLC). We found that over time the proctolin peak became progressively smaller, while three novel peaks appeared and increased in size. Comigration experiments using HPLC indicated that the major novel peak was Proct. (Tyr-Leu-Pro-Thr), while one of the two minor peaks was Proct. (Leu-Pro-Thr). The other minor peak appeared to be Proct. (Arg-Tyr), based on similar HPLC retention time to synthetic Proct. The reduction in the proctolin peak and the increase in the Proct. peak was prevented by co-incubation of proctolin with any one of several aminopeptidase inhibitors (10(-4) M). Proct. and Proct. appeared to result from a diaminopeptidase-mediated cleavage of proctolin. We tested whether N-terminal cleavage functionally inactivated proctolin by coapplying proctolin (10(-8) M) and individual aminopeptidase inhibitors (10(-5) M) to the isolated stomatogastric ganglion (STG). We found that these inhibitors significantly enhanced the proctolin excitation of the pyloric rhythm. Furthermore, application of synthetic Proct. to the STG had no effect unless high concentrations (\u3e 10(-6) M) were used, and neither Proct. nor Proct. (10(-4) M) influenced the pyloric rhythm. Our results indicate that proctolin is enzymatically degraded and thereby biologically inactivated in the crab nervous system, primarily by extracellularly located aminopeptidase activity

    Similarities and differences in circuit responses to applied Gly \u3csup\u3e1\u3c/sup\u3e -SIFamide and peptidergic (Gly \u3csup\u3e1\u3c/sup\u3e -SIFamide) neuron stimulation

    Get PDF
    Similarities and differences in circuit responses to applied Gly 1 -SIFamide and peptidergic (Gly 1 -SIFamide) neuron stimulation. J Neurophysiol 121: 950 –972, 2019. First published January 16, 2019; doi:10.1152/jn.00567.2018.—Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly 1 -SIFamide) immunoreactivity (Gly 1 -SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly 1 -SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly 1 -SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly 1 -SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly 1 -SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (±30 s) MCN5 stimulation activated a Gly 1 -SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly 1 -SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly 1 -SIFamide. MCN5 and Gly 1 -SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context

    Mass Spectrometry Quantification, Localization, and Discovery of Feeding-Related Neuropeptides in Cancer borealis

    Get PDF
    The crab Cancer borealis nervous system is an important model for understanding neural circuit dynamics and modulation, but the identity of neuromodulatory substances and their influence on circuit dynamics in this system remains incomplete, particularly with respect to behavioral state-dependent modulation. Therefore, we used a multifaceted mass spectrometry (MS) method to identify neuropeptides that differentiate the unfed and fed states. Duplex stable isotope labeling revealed that the abundance of 80 of 278 identified neuropeptides was distinct in ganglia and/or neurohemal tissue from fed vs unfed animals. MS imaging revealed that an additional 7 and 11 neuropeptides exhibited altered spatial distributions in the brain and the neuroendocrine pericardial organs (POs), respectively, during these two feeding states. Furthermore, de novo sequencing yielded 69 newly identified putative neuropeptides that may influence feeding state-related neuromodulation. Two of these latter neuropeptides were determined to be upregulated in PO tissue from fed crabs, and one of these two peptides influenced heartbeat in ex vivo preparations. Overall, the results presented here identify a cohort of neuropeptides that are poised to influence feeding-related behaviors, providing valuable opportunities for future functional studies

    Different Proctolin Neurons Elicit Distinct Motor Patterns From a Multifunctional Neuronal Network

    Get PDF
    Distinct motor patterns are selected from a multifunctional neuronal network by activation of different modulatory projection neurons. Subsets of these projection neurons can contain the same neuromodulator(s), yet little is known about the relative influence of such neurons on network activity. We have addressed this issue in the stomatogastric nervous system of the crab Cancer borealis. Within this system, there is a neuronal network in the stomatogastric ganglion (STG) that produces many versions of the pyloric and gastric mill rhythms. These different rhythms result from activation of different projection neurons that innervate the STG from neighboring ganglia and modulate STG network activity. Three pairs of these projection neurons contain the neuropeptide proctolin. These include the previously identified modulatory proctolin neuron and modulatory commissural neuron 1 (MCN1) and the newly identified modulatory commissural neuron 7 (MCN7). We document here that each of these neurons contains a unique complement of cotransmitters and that each of these neurons elicits a distinct version of the pyloric motor pattern. Moreover, only one of them (MCN1) also elicits a gastric mill rhythm. The MCN7-elicited pyloric rhythm includes a pivotal switch by one STG network neuron from playing a minor to a major role in motor pattern generation. Therefore, modulatory neurons that share a peptide transmitter can elicit distinct motor patterns from a common target network

    ALLPATHS 2: Small Genomes Assembled Accurately and with High Continuity from Short Paired Reads

    Get PDF
    We demonstrate that genome sequences approaching finished quality can be generated from short paired reads. Using 36 base (fragment) and 26 base (jumping) reads from five microbial genomes of varied GC composition and sizes up to 40 Mb, ALLPATHS2 generated assemblies with long, accurate contigs and scaffolds. Velvet and EULER-SR were less accurate. For example, for Escherichia coli, the fraction of 10-kb stretches that were perfect was 99.8% (ALLPATHS2), 68.7% (Velvet), and 42.1% (EULER-SR).Organismic and Evolutionary Biolog

    Effect of formant frequency spacing on perceived gender in pre-pubertal children's voices

    Get PDF
    <div><p>Background</p><p>It is usually possible to identify the sex of a pre-pubertal child from their voice, despite the absence of sex differences in fundamental frequency at these ages. While it has been suggested that the overall spacing between formants (formant frequency spacing - ΔF) is a key component of the expression and perception of sex in children's voices, the effect of its continuous variation on sex and gender attribution has not yet been investigated.</p><p>Methodology/Principal findings</p><p>In the present study we manipulated voice ΔF of eight year olds (two boys and two girls) along continua covering the observed variation of this parameter in pre-pubertal voices, and assessed the effect of this variation on adult ratings of speakers' sex and gender in two separate experiments. In the first experiment (sex identification) adults were asked to categorise the voice as either male or female. The resulting identification function exhibited a gradual slope from male to female voice categories. In the second experiment (gender rating), adults rated the voices on a continuum from “masculine boy” to “feminine girl”, gradually decreasing their masculinity ratings as ΔF increased.</p><p>Conclusions/Significance</p><p>These results indicate that the role of ΔF in voice gender perception, which has been reported in adult voices, extends to pre-pubertal children's voices: variation in ΔF not only affects the perceived sex, but also the perceived masculinity or femininity of the speaker. We discuss the implications of these observations for the expression and perception of gender in children's voices given the absence of anatomical dimorphism in overall vocal tract length before puberty.</p></div

    Reply to Guy et al.: Support for a bottleneck in the 2011 Escherichia coli O104:H4 outbreak in Germany

    Get PDF
    In our paper (1), we analyzed isolates from the Escherichia coli O104:H4 outbreaks in Germany and France in May to July 2011. We concluded that, although the German outbreak was larger, the German isolates represent a clade within the greater diversity of the French outbreak. We proposed several hypotheses to explain these findings, including that the lineage leading to the German outbreak went through a narrow bottleneck that purged diversity. Guy et al. (2) report the genomes of eight additional E. coli O104:H4 isolates sampled from the German outbreak. By focusing on the numbers of SNPs in their samples, they suggest that the German outbreak is more diverse than we reported and is similar to the French outbreak. In fact, Guy et al.’s data (2) strongly support our conclusion that the German outbreak represents a clade within the diversity
    • …
    corecore