61 research outputs found

    Function of Serum Complement in Drinking Water Arsenic Toxicity

    Get PDF
    Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P < 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P < 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity

    Experimental Investigation of Diesel Engine Performance, Combustion and Emissions Using a Novel Series of Dioctyl Phthalate (DOP) Biofuels Derived from Microalgae

    Get PDF
    Physico-chemical properties of microalgae biodiesel depend on the microalgae species and oil extraction method. Dioctyl phthalate (DOP) is a clear, colourless and viscous liquid as a plasticizer. It is used in the processing of polyvinyl chloride (PVC) resin and polymers. A new potential biofuel, hydrothermally liquefied microalgae bio-oil can contain nearly 11% (by mass) of DOP. This study investigated the feasibility of using up to 20% DOP blended in 80% diesel fuel (v/v) in an existing diesel engine, and assessed the performance and exhaust emissions. Despite reasonable differences in density, viscosity, surface tension, and boiling point, blends of DOP and diesel fuel were found to be entirely miscible and no separation was observed at any stage during prolonged miscibility tests. The engine test study found a slight decrease in peak cylinder pressure, brake, and indicated mean effective pressure, indicated power, brake power, and indicated and brake thermal efficiency with DOP blended fuels, where the specific fuel consumption increased. This is due to the presence of 16.4% oxygen in neat DOP, responsible for the relatively lower heating value, compared to that of diesel. The emission tests revealed a slight increase in nitrogen oxides (NOx) and carbon monoxide (CO) emissions from DOP blended fuels. However, particulate matter (PM) emissions were lower from DOP blended fuels, although some inconsistency in particle number (PN) was present among different engine loads

    Analyses of Genetic Variations of Glutathione S-Transferase Mu1 and Theta1 Genes in Bangladeshi Tannery Workers and Healthy Controls

    Get PDF
    Glutathione S-transferases (GSTs) belong to a group of multigene detoxification enzymes, which defend cells against oxidative stress. Tannery workers are at risk of oxidative damage that is usually detoxified by GSTs. This study investigated the genotypic frequencies of GST Mu1 (GSTM1) and GST Theta1 (GSTT1) in Bangladeshi tannery workers and healthy controls followed by their status of oxidative stress and total GST activity. Of the 188 individuals, 50.0% had both GSTM1 and GSTT1 (+/+), 12.2% had GSTM1 (+/−), 31.4% had GSTT1 (−/+) alleles, and 6.4% had null genotypes (−/−) with respect to both GSTM1 and GSTT1 alleles. Among 109 healthy controls, 54.1% were double positive, 9.2% had GSTM1 allele, 32.1% had GSTT1 allele, and 4.6% had null genotypes. Out of 79 tannery workers, 44.3% were +/+, 16.8% were +/−, 30.5% were −/+, and 8.4% were −/−. Though the polymorphic genotypes or allelic variants of GSTM1 and GSTT1 were distributed among the study subjects with different frequencies, the differences between the study groups were not statistically significant. GST activity did not vary significantly between the two groups and also among different genotypes while level of lipid peroxidation was significantly higher in tannery workers compared to controls irrespective of their GST genotypes

    Construction of copy number variation landscape and characterization of associated genes in a Bangladeshi cohort of neurodevelopmental disorders

    Get PDF
    Introduction: Copy number variations (CNVs) play a critical role in the pathogenesis of neurodevelopmental disorders (NDD) among children. In this study, we aim to identify clinically relevant CNVs, genes and their phenotypic characteristics in an ethnically underrepresented homogenous population of Bangladesh. Methods: We have conducted chromosomal microarray analysis (CMA) for 212 NDD patients with male to female ratio of 2.2:1.0 to identify rare CNVs. To identify candidate genes within the rare CNVs, gene constraint metrics [i.e., “Critical-Exon Genes (CEGs)”] were applied to the population data. Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) was followed in a subset of 95 NDD patients to assess the severity of autism and all statistical tests were performed using the R package. Results: Of all the samples assayed, 12.26% (26/212) and 57.08% (121/212) patients carried pathogenic and variant of uncertain significance (VOUS) CNVs, respectively. While 2.83% (6/212) patients’ pathogenic CNVs were found to be located in the subtelomeric regions. Further burden test identified females are significant carriers of pathogenic CNVs compared to males (OR = 4.2; p = 0.0007). We have observed an increased number of Loss of heterozygosity (LOH) within cases with 23.85% (26/109) consanguineous parents. Our analyses on imprinting genes show, 36 LOH variants disrupting 69 unique imprinted genes and classified these variants as VOUS. ADOS-2 subset shows severe social communication deficit (p = 0.014) and overall ASD symptoms severity (p = 0.026) among the patients carrying duplication CNV compared to the CNV negative group. Candidate gene analysis identified 153 unique CEGs in pathogenic CNVs and 31 in VOUS. Of the unique genes, 18 genes were found to be in smaller (<1 MB) focal CNVs in our NDD cohort and we identified PSMC3 gene as a strong candidate gene for Autism Spectrum Disorder (ASD). Moreover, we hypothesized that KMT2B gene duplication might be associated with intellectual disability. Conclusion: Our results show the utility of CMA for precise genetic diagnosis and its integration into the diagnosis, therapy and management of NDD patients

    Investigation of diesel engine performance and exhaust emissions of microalgae fuel components in a turbocharged diesel engine

    No full text
    Nabi, M ORCiD: 0000-0002-4087-930XMicroalgae are a promising feedstock for alternative fuel for compression ignition engines due to their positive contribution to reducing greenhouse gas emissions. Microalgae are gaining significant interest as they can produce more oil than any oilseed plants. Unlike some other plant oils, the use of microalgae as an alternative to fossil fuels, can overcome food versus fuel conflict. In the current investigation, five different chemical components of microalgae hydrothermal liquefaction (HTL) biocrude paraffin, xylene, cyclo-pentanone, dioctyl-phthalate and butanol were mixed in equal volumes. Commercial diesel fuel was used as a reference fuel. The first blend consisted of 5 vol% of each of the 5 components was mixed with 75 vol% diesel. The blend is called as B1. The second blend consisted of 10 vol% of each of the 5 components was mixed with 50 vol% of diesel. This blend is called B2. The neat diesel (100% pure diesel) is called as 100D. The engine used in this study was a six-cylinder high-pressure common rail direct injection diesel engine fitted with a turbocharger. This study deals with engine performance, combustion and exhaust emission characteristics comparing diesel, B1 and B2 blends. The experimental results indicated a general reduction in both particle mass (PM) and total particle number (PN) emissions with both blends compared to those of diesel. Increase in nitrogen oxides (NOx) emissions at all four engine loads were found with both B1 and B2 blends. It was realised that the drop or rise of emissions was mainly a function of fuel-bound oxygen. © 2019 Elsevier Lt

    Assessment of the Influence of Hydrogen Share on Performance, Combustion, and Emissions in a Four-Stroke Gasoline Engine

    Get PDF
    This study aims to develop a one-dimensional model to investigate the effect of hydrogen share in gasoline fuel on the performance, combustion, and exhaust emissions of a gasoline direct-injection engine. Iso-octane was used as a reference fuel to compare performance, combustion, and emission parameters. The model was developed using commercial GT-Suite and ANSYS software. The simulation results using GT-Suite were validated with the published data and ANSYS results. The hydrogen fractions were varied from 0% to 11.09% to validate the simulation results with the published results. The investigation continued with three higher hydrogen fractions (15%, 20% and 25%) to study the performance, combustion, emissions, and sustainability parameters. Compared to neat gasoline, hydrogen-shared fuels show a maximum 2% higher exergy efficiency, 51% higher exergy and 42% energy rates while reducing carbon dioxide (CO2) emissions by 51% with a penalty of nitrogen oxide emissions (NOx) by 62% at an excess ratio of 1.3. Other novel findings, including higher sustainability indices, lower depletion potentials, and lower unitary cost indices with higher-fraction hydrogen fuels, suggest that they are environmentally and economically sustainable. In the second part of this study, the NOx formation mechanism and its associated factors, including in-cylinder temperature, heat transfer rate, cumulative heat release, and burned rate, were confirmed and compared with gasoline and neat ethylene.This research work was supported in part by the Kuwait Foundation for the Advancement of Sciences, Kuwait, under Grant CR19-45EM-01; in part by Central Queensland University, Australia, under Grant RSH/5221. The publication of this article was funded by Qatar National Library

    Function of Serum Complement in Drinking Water Arsenic Toxicity

    No full text
    Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P &lt; 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P &lt; 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity

    Reductions in diesel emissions including PM and PN emissions with diesel-biodiesel blends

    Full text link
    The current work is an experimental investigation to examine the influence of biodiesel derived from waste cooking oil on engine performance and exhaust emissions. Experiments were conducted with three biodiesel blends at 20%, 40%, and 60% (by volume). A petroleum diesel fuel was used as a reference fuel. The primary purpose of this study was to observe both particulate matter (PM) and particle number (PN) emissions for the three biodiesel blends. Furthermore, the blow-by emissions of the biodiesel blends were also studied. All measurements were conducted in a six-cylinder turbocharged diesel engine with a high-pressure common rail injection system in compliance with a 13-Mode European Stationary Cycle (ESC)

    Assessment of the use of a novel series of oxygenated fuels for a turbocharged diesel engine

    No full text
    This study reports on a turbo-charged diesel engine performance, combustion and exhaust emissions when fuelled with three non-edible biodiesel blends, a neat waste cooking biodiesel (WBD100) and a neat reference diesel (D100). Waste cooking biodiesel was chosen as the non-edible biodiesel for its availability and low cost. Diethylene glycol dimethyl ether (DGM) was introduced as an additive owing to its superior ignitability and high oxygen content. The three blends tested in this investigation were 70/30/0, 70/20/10 and 70/10/20 in proportions of diesel/waste cooking biodiesel/DGM. In all cases, a commercial diesel was taken as the reference fuel for comparative discussion about parameters of the engine performance, combustion and exhaust emissions. A fully-instrumented, 4-stroke, 6-cylinder, turbocharged diesel engine was utilised for the experiments. Without significantly deteriorating engine performance, the three biodiesel blends and WBD100 reduced both particulate matter (PM) and particulate number (PN) emissions remarkably with the expected increase of nitrogen oxides (NOx) emissions
    corecore