6 research outputs found

    The effect of low sulphur wax residue (lswr) surfactant in stabilization of crude oil emulsion

    Get PDF
    The crude oil had found in the depth of the earth and pumped out on land or in the seabed. Before being used as fuel or as a raw material in the petrochemical industry, crude oil is refined into different fractions separated into light and heavy fractions, which are then, converted into various products, such as petrol, diesel oil, or jet fuel. Usually, in the crude oil had presence of water which may cause a lot of problems due to transporting, operational problems and equipment corrosion. Therefore, this motivated many researchers to study the stabilization of crude oil emulsion since few years. Thus, the main aim of this study is to prepare of model emulsion which water in oil by prepared the sample first with continuous phase (crude oil) and emulsifier before added the dispersed phase. Then, the characteristic of the water in oil emulsion had study the stabilization via difference surfactants and their concentration for 20%-80% and 50%-50% water and crude oil ratio samples. However, the 20%-80% showed most stable compared to 50%-50%. Moreover, LSWR also had found as most stable as span 83, span 80 and triton x-100. The stable crude oil emulsion also had undergoes mechanism for characterize the affected of viscosity at varied temperature, rpm and concentration for crude oil and the aqueous phase. In this mechanism applied, the characteristic of crude oil and aqueous phase had showed the rose of temperature, rpm or concentration, the decreasing of viscosity. Then, the stable crude oil emulsion had evaluated the performance of de-emulsification via difference chemicals surfactant and their concentration at normal gravitational settling. The approximately 75% of water had separated at 24 to 96 hours had showed optimum and the best separation via Hexylamine. Hence, this study affords an efficient stabilization and separation only by using chemicals surfactants and concentration with the normal gravitational settling

    Core Shell Nanostructure: Impregnated Activated Carbon as Adsorbent for Hydrogen Sulfide Adsorption

    No full text
    This study focuses on the synthesis, characterization, and evaluation of the performance of core shell nanostructure adsorbent for hydrogen sulfide (H2S) capture. Commercial coconut shell activated carbon (CAC) and commercial mixed gas of 5000 ppm H2S balanced N2 were used. With different preparation techniques, the CAC was modified by core shell impregnation with zinc oxide (ZnO), titanium oxide (TiO2), potassium hydroxide (KOH), and zinc acetate (ZnAC2). The core structure was prepared with CAC impregnated by single chemical and double chemical labelled with ZnAC2-CAC (single chemical), ZnAC2/KOH-CAC, ZnAC2/ZnO-CAC, and ZnAC2/TiO2-CAC. Then, the prepared core was layered either with KOH, TiO2, NH3, or TEOS for the shell. The synthesized adsorbents were characterized in physical and chemical characterization through scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyzers. Operation of the adsorber column takes place at ambient temperature, with absolute pressure at 1.5 bar. The H2S gas was fed into the column at 5.5 L/min and the loaded adsorbents were 150 g. The performance of synthesized adsorbent was analyzed through the adsorbent’s capability in capturing H2S gas. Based on the results, ZnAc2/ZnO/CAC_WOS shows a better adsorption capacity with 1.17 mg H2S/g and a 53% increment compared to raw CAC. However, the degradation of the adsorbents was higher compared to ZnAc2/ZnO/CAC_OS and to ZnAc2/ZnO/CAC_WS ZnAc2/ZnO/CAC_OS. The presence of silica as a shell has potentially increased the adsorbent’s stability in several cycles of adsorption-desorption

    Adsorption–Desorption Behavior of Hydrogen Sulfide Capture on a Modified Activated Carbon Surface

    No full text
    Metal-based adsorbents with varying active phase loadings were synthesized to capture hydrogen sulfide (H2S) from a biogas mimic system. The adsorption–desorption cycles were implemented to ascertain the H2S captured. All prepared adsorbents were evaluated by nitrogen adsorption, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy–energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. From the results, modified adsorbents, dual chemical mixture (DCM) and a core–shell (CS) had the highest H2S adsorption performance with a range of 0.92–1.80 mg H2S/g. After several cycles of heat/N2 regeneration, the total H2S adsorption capacity of the DCM adsorbent decreased by 62.1%, whereas the CS adsorbent decreased by only 25%. Meanwhile, the proposed behavioral model for H2S adsorption–desorption was validated effectively using various analyses throughout the three cycles of adsorption–desorption samples. Moreover, as in this case, the ZnAc2/ZnO/CAC_OS adsorbents show outstanding performances with 30 cycles of adsorption–desorption compared to only 12 cycles of ZnAc2/ZnO/CAC_DCM. Thus, this research paper will provide fresh insights into adsorption–desorption behavior through the best adsorbents’ development and the adsorbents’ capability at the highest number of adsorption–desorption cycles

    Removal of hydrogen sulfide from a biogas mimic by using impregnated activated carbon adsorbent.

    No full text
    Adsorption technology has led to the development of promising techniques to purify biogas, i.e., biomethane or biohydrogen. Such techniques mainly depend on the adsorbent ability and operating parameters. This research focused on adsorption technology for upgrading biogas technique by developing a novel adsorbent. The commercial coconut shell activated carbon (CAC) and two types of gases (H2S/N2 and H2S/N2/CO2) were used. CAC was modified by copper sulfate (CuSO4), zinc acetate (ZnAc2), potassium hydroxide (KOH), potassium iodide (KI), and sodium carbonate (Na2CO3) on their surface to increase the selectivity of H2S removal. Commercial H2S adsorbents were soaked in 7 wt.% of impregnated solution for 30 min before drying at 120°C for 24 h. The synthesized adsorbent's physical and chemical properties, including surface morphology, porosity, and structures, were characterized by SEM-EDX, FTIR, XRD, TGA, and BET analyses. For real applications, the modified adsorbents were used in a real-time 0.85 L single-column adsorber unit. The operating parameters for the H2S adsorption in the adsorber unit varied in L/D ratio (0.5-2.5) and feed flow rate (1.5-5.5 L/min) where, also equivalent with a gas hourly space velocity, GHSV (212.4-780.0 hour-1) used. The performances of H2S adsorption were then compared with those of the best adsorbent that can be used for further investigation. Characterization results revealed that the impregnated solution homogeneously covered the adsorbent surface, morphology, and properties (i.e., crystallinity and surface area). BET analysis further shows that the modified adsorbents surface area decreased by up to 96%. Hence, ZnAc2-CAC clarify as the best adsorption capacity ranging within 1.3-1.7 mg H2S/g, whereby the studied extended to adsorption-desorption cycle

    Application of Response Surface Methodology for Preparation of ZnAC2/CAC Adsorbents for Hydrogen Sulfide (H2S) Capture

    No full text
    Hydrogen sulfide (H2S) should be removed in the early stage of biogas purification as it may affect biogas production and cause environmental and catalyst toxicity. The adsorption of H2S gas by using activated carbon as a catalyst has been explored as a possible technology to remove H2S in the biogas industry. In this study, we investigated the optimal catalytic preparation conditions of the H2S adsorbent by using the RSM methodology and the Box–Behnken experimental design. The H2S catalyst was synthesized by impregnating commercial activated carbon (CAC) with zinc acetate (ZnAc2) with the factors and level for the Box–Behnken Design (BBD): molarity of 0.2–1.0 M ZnAc2 solution, soaked temperature of 30–100 °C, and soaked time of 30–180 min. Two responses including the H2S adsorption capacity and the BET surface area were assessed using two-factor interaction (2FI) models. The interactions were examined by using the analysis of variance (ANOVA). Hence, the optimum point of molarity was 0.22 M ZnAc2 solution, the soaked period was 48.82 min, and the soaked temperature was 95.08 °C obtained from the optimum point with the highest H2S adsorption capacity (2.37 mg H2S/g) and the optimum BET surface area (620.55 m2/g). Additionally, the comparison of the optimized and the non-optimized catalytic adsorbents showed an enhancement in the H2S adsorption capacity of up to 33%

    Parametric Study and Electrocatalyst of Polymer Electrolyte Membrane (PEM) Electrolysis Performance

    No full text
    An investigation was conducted to determine the effects of operating parameters for various electrode types on hydrogen gas production through electrolysis, as well as to evaluate the efficiency of the polymer electrolyte membrane (PEM) electrolyzer. Deionized (DI) water was fed to a single-cell PEM electrolyzer with an active area of 36 cm2. Parameters such as power supply (50–500 mA/cm2), feed water flow rate (0.5–5 mL/min), water temperature (25−80 °C), and type of anode electrocatalyst (0.5 mg/cm2 PtC [60%], 1.5 mg/cm2 IrRuOx with 1.5 mg/cm2 PtB, 3.0 mg/cm2 IrRuOx, and 3.0 mg/cm2 PtB) were varied. The effects of these parameter changes were then analyzed in terms of the polarization curve, hydrogen flowrate, power consumption, voltaic efficiency, and energy efficiency. The best electrolysis performance was observed at a DI water feed flowrate of 2 mL/min and a cell temperature of 70 °C, using a membrane electrode assembly that has a 3.0 mg/cm2 IrRuOx catalyst at the anode side. This improved performance of the PEM electrolyzer is due to the reduction in activation as well as ohmic losses. Furthermore, the energy consumption was optimal when the current density was about 200 mA/cm2, with voltaic and energy efficiencies of 85% and 67.5%, respectively. This result indicates low electrical energy consumption, which can lower the operating cost and increase the performance of PEM electrolyzers. Therefore, the optimal operating parameters are crucial to ensure the ideal performance and durability of the PEM electrolyzer as well as lower its operating costs
    corecore