29 research outputs found

    Resolving the Topological Classification of Bismuth with Topological Defects

    Full text link
    Bulk boundary correspondence in topological materials allows to study their bulk topology through the investigation of their topological boundary modes. However, for classes that share similar boundary phenomenology, the growing diversity of topological phases may lead to ambiguity in the topological classification of materials. Such is the current status of bulk bismuth. While some theoretical models indicate that bismuth possesses a trivial topological nature, other theoretical and experimental studies suggest non-trivial topological classifications such as a strong or a higher order topological insulator, both of which hosts helical modes on their boundaries. Here we use a novel approach to resolve the topological classification of bismuth by spectroscopically mapping the response of its boundary modes to a topological defect in the form of a screw dislocation (SD). We find that the edge mode extends over a wide energy range, and withstands crystallographic irregularities, without showing any signs of backscattering. It seems to bind to the bulk SD, as expected for a topological insulator (TI) with non-vanishing weak indices. We argue that the small scale of the bulk energy gap, at the time reversal symmetric momentum LL, positions bismuth within the critical region of a topological phase transition to a strong TI with non-vanishing weak indices. We show that the observed boundary modes are approximately helical already on the Z2\mathbb{Z}_2 trivial side of the topological phase transition. This work opens the door for further possibilities to examine the response of topological phases to crystallographic topological defects, and to uniquely explore their associated bulk boundary phenomena

    Hot Electrons Regain Coherence in Semiconducting Nanowires

    Full text link
    The higher the energy of a particle is above equilibrium the faster it relaxes due to the growing phase-space of available electronic states it can interact with. In the relaxation process phase coherence is lost, thus limiting high energy quantum control and manipulation. In one-dimensional systems high relaxation rates are expected to destabilize electronic quasiparticles. We show here that the decoherence induced by relaxation of hot electrons in one-dimensional semiconducting nanowires evolves non-monotonically with energy such that above a certain threshold hot-electrons regain stability with increasing energy. We directly observe this phenomenon by visualizing for the first time the interference patterns of the quasi-one-dimensional electrons using scanning tunneling microscopy. We visualize both the phase coherence length of the one-dimensional electrons, as well as their phase coherence time, captured by crystallographic Fabry-Perot resonators. A remarkable agreement with a theoretical model reveals that the non-monotonic behavior is driven by the unique manner in which one dimensional hot-electrons interact with the cold electrons occupying the Fermi-sea. This newly discovered relaxation profile suggests a high-energy regime for operating quantum applications that necessitate extended coherence or long thermalization times, and may stabilize electronic quasiparticles in one dimension

    Inverse melting of the vortex lattice

    Full text link
    Inverse melting, in which a crystal reversibly transforms into a liquid or amorphous phase upon decreasing the temperature, is considered to be very rare in nature. The search for such an unusual equilibrium phenomenon is often hampered by the formation of nonequilibrium states which conceal the thermodynamic phase transition, or by intermediate phases, as was recently shown in a polymeric system. Here we report a first-order inverse melting of the magnetic flux line lattice in Bi2Sr2CaCu2O8 superconductor. At low temperatures, the material disorder causes significant pinning of the vortices, which prevents observation of their equilibrium properties. Using a newly introduced 'vortex dithering' technique we were able to equilibrate the vortex lattice. As a result, direct thermodynamic evidence of inverse melting transition is found, at which a disordered vortex phase transforms into an ordered lattice with increasing temperature. Paradoxically, the structurally ordered lattice has larger entropy than the disordered phase. This finding shows that the destruction of the ordered vortex lattice occurs along a unified first-order transition line that gradually changes its character from thermally-induced melting at high temperatures to a disorder-induced transition at low temperatures.Comment: 13 pages, 4 figures, Nature, In pres

    Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2

    Full text link
    Bulk-surface correspondence in Weyl semimetals assures the formation of topological "Fermi-arc" surface bands whose existence is guaranteed by bulk Weyl nodes. By investigating three distinct surface terminations of the ferromagnetic semimetal Co3Sn2S2 we verify spectroscopically its classification as a time reversal symmetry broken Weyl semimetal. We show that the distinct surface potentials imposed by three different terminations modify the Fermi-arc contour and Weyl node connectivity. On the Sn surface we identify intra-Brillouin zone Weyl node connectivity of Fermi-arcs, while on Co termination the connectivity is across adjacent Brillouin zones. On the S surface Fermi-arcs overlap with non-topological bulk and surface states that ambiguate their connectivity and obscure their exact identification. By these we resolve the topologically protected electronic properties of a Weyl semimetal and its unprotected ones that can be manipulated and engineered

    Propagation of Avalanches in Mn12_{12}-acetate: Magnetic Deflagration

    Full text link
    Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly two orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.Comment: 5 pages, 5 figure

    Visualizing near-coexistence of massless Dirac electrons and ultra-massive saddle point electrons

    Full text link
    Strong singularities in the electronic density of states amplify correlation effects and play a key role in determining the ordering instabilities in various materials. Recently high order van Hove singularities (VHSs) with diverging power-law scaling have been classified in single-band electron models. We show that the 110 surface of Bismuth exhibits high order VHS with an usually high density of states divergence ∼(E)−0.7\sim (E)^{-0.7}. Detailed mapping of the surface band structure using scanning tunneling microscopy and spectroscopy combined with first-principles calculations show that this singularity occurs in close proximity to Dirac bands located at the center of the surface Brillouin zone. The enhanced power-law divergence is shown to originate from the anisotropic flattening of the Dirac band just above the Dirac node. Such near-coexistence of massless Dirac electrons and ultra-massive saddle points enables to study the interplay of high order VHS and Dirac fermions
    corecore