13 research outputs found

    Long-Term Storage of Surface-Adsorbed Protein Machines

    No full text
    The effective and simple long-term storage of complex functional proteins is critical in achieving commercially viable biosensors. This issue is particularly challenging in recently proposed types of nanobiosensors, where molecular-motor-driven transportation substitutes microfluidics and forms the basis for novel detection schemes. Importantly, therefore, we here describe that delicate heavy meromyosin (HMM)-based nanodevices (HMM motor fragments adsorbed to silanized surfaces and actin bound to HMM) fully maintain their function when stored at −20 °C for more than a month. The mechanisms for the excellent preservation of acto-HMM motor function upon repeated freeze–thaw cycles are discussed. The results are important to the future commercial implementation of motor-based nanodevices and are of more general value to the long-term storage of any protein-based bionanodevice

    Long-Term Storage of Surface-Adsorbed Protein Machines

    No full text
    The effective and simple long-term storage of complex functional proteins is critical in achieving commercially viable biosensors. This issue is particularly challenging in recently proposed types of nanobiosensors, where molecular-motor-driven transportation substitutes microfluidics and forms the basis for novel detection schemes. Importantly, therefore, we here describe that delicate heavy meromyosin (HMM)-based nanodevices (HMM motor fragments adsorbed to silanized surfaces and actin bound to HMM) fully maintain their function when stored at −20 °C for more than a month. The mechanisms for the excellent preservation of acto-HMM motor function upon repeated freeze–thaw cycles are discussed. The results are important to the future commercial implementation of motor-based nanodevices and are of more general value to the long-term storage of any protein-based bionanodevice

    In vitro assays of molecular motors: Impact of motor-surface interactions

    No full text
    In many types of biophysical studies of both single molecules and ensembles of molecular motors the motors are adsorbed to artificial surfaces. Some of the most important assay systems of this type (in vitro motility assays and related single molecule techniques) will be briefly described together with an account of breakthroughs in the understanding of actomyosin function that have resulted from their use. A poorly characterized, but potentially important, entity in these studies is the mechanism of motor adsorption to surfaces and the effects of motor surface interactions on experimental results. A better understanding of these phenomena is also important for the development of commercially viable nanotechnological applications powered by molecular motors. Here, we will consider several aspects of motor surface interactions with a particular focus on heavy meromyosin (HMM) from skeletal muscle. These aspects will be related to heavy meromyosin structure and relevant parts of the vast literature on protein-surface interactions for non-motor proteins. An overview of methods for studying motor-surface interactions will also be given. The information is used as a basis for further development of a model for HMM-surface interactions and is discussed in relation to experiments where nanopatterning has been employed for in vitro reconstruction of actomyosin order. The challenges and potentials of this approach in biophysical studies, compared to the use of self-assembly of biological components into supramolecular protein aggregates (e.g. myosin filaments) will be considered. Finally, this review will consider the implications for further developments of motor-powered lab-on-a-chip devices

    Mode of Heavy Meromyosin Adsorption and Motor Function Correlated with Surface Hydrophobicity and Charge

    No full text
    The in vitro motility assay is valuable for fundamental studies of actomyosin function and has recently been combined with nanostructuring techniques for the development of nanotechnological applications. However, the limited understanding of the interaction mechanisms between myosin motor fragments (heavy meromyosin, HMM) and artificial surfaces hampers the development as well as the interpretation of fundamental studies. Here we elucidate theHMM-surface interaction mechanisms for a range of negatively charged surfaces (silanized glass and SiO2), which is relevant both to nanotechnology and fundamental studies. The results show that the HMM-propelled actin filament sliding speed (after a single injection of HMM, 120 Ă­g/mL) increased with the contact angle of the surfaces (in the range of 20-80°). However, quartz crystal microbalance (QCM) studies suggested a reduction in the adsorption of HMM (with coupled water) under these conditions. This result and actin filament binding data, together with previous measurements of the HMM density (Sundberg, M.; Balaz, M.; Bunk, R.; Rosengren-Holmberg, J. P.; Montelius, L.; Nicholls, I. A.; Omling, P.; TĂ„gerud, S.; MĂ„nsson, A. Langmuir 2006, 22, 7302-7312. Balaz, M.; Sundberg, M.; Persson, M.; Kvassman, J.; MĂ„nsson, A. Biochemistry 2007, 46, 7233-7251), are consistent with (1) an HMM monolayer and (2) differentHMMconfigurations at different contact angles of the surface. More specifically, theQCM and in vitro motility assay data are consistent with a model where the molecules are adsorbed either via their flexible C-terminal tail part (HMMC) or via their positively charged N-terminal motor domain (HMMN) without other surface contact points. Measurements of Ăș potentials suggest that an increased contact angle is correlated with a reduced negative charge of the surfaces. As a consequence, the HMMC configuration would be the dominant configuration at high contact angles but would be supplemented with electrostatically adsorbedHMMmolecules(HMMN configuration) at low contact angles. This would explain the higher initial HMM adsorption (from probability arguments) under the latter conditions. Furthermore, because the HMMN mode would have no actin binding it would also account for the lower sliding velocity at low contact angles. The results are compared to previous studies of the microtubule-kinesin system and are alsoJRC.I.4-Nanotechnology and Molecular Imagin

    Actin filament guidance on a chip: Toward high-throughput assays and lab-on-a-chip applications

    No full text
    Biological molecular motors that are constrained so that function is effectively limited to predefined nanosized tracks may be used as molecular shuttles in nanotechnological applications. For these applications and in high-throughput functional assays (e. g., drug screening), it is important that the motors propel their cytoskeletal filaments unidirectionally along the tracks with a minimal number of escape events. We here analyze the requirements for achieving this for actin filaments that are propelled by myosin II motor fragments (heavy meromyosin; HMM). First, we tested the guidance of HMM-propelled actin filaments along chemically defined borders. Here, trimethylchlorosilane (TMCS)-derivatized areas with high-quality HMM function were surrounded by SiO2 domains where HMM did not bind actin. Guidance along the TMCS-SiO2 border was almost 100% for filament approach angles between 0 and 20 degrees but only about 10% at approach angles near 90 degrees. A model (Clemmens, J.; Hess, H.; Lipscomb, R.; Hanein, Y.; Bohringer, K. F.; Matzke, C. M.; Bachand, G. D.; Bunker, B. C.; Vogel, V. Langmuir 2003, 19, 10967-10974) accounted for essential aspects of the data and also correctly predicted a more efficient guidance of actin filaments than previously shown for kinesin- propelled microtubules. Despite the efficient guidance at low approach angles, nanosized (< 700 nm wide) TMCS tracks surrounded by SiO2 were not effective in guiding actin filaments. Neither was there complete guidance along nanosized tracks that were surrounded by topographical barriers (walls and roof partially covering the track) unless there was also chemically based selectivity between the tracks and surroundings. In the latter case, with dually defined tracks, there was close to 100% guidance. A combined experimental and theoretical analysis, using tracks of the latter type, suggested that a track width of less than about 200-300 nm is sufficient at a high HMM surface density to achieve unidirectional sliding of actin filaments. In accord with these results, we demonstrate the long- term trapping of actin filaments on a closed-loop track (width < 250 nm). The results are discussed in relation to lab-on-a-chip applications and nanotechnology-assisted assays of actomyosin function

    Diffusion Dynamics of Motor-Driven Transport: Gradient Production and Self-Organization of Surfaces.

    No full text
    The interaction between cytoskeletal filaments (e.g., actin filaments) and molecular motors (e.g., myosin) is the basis for many aspects of cell motility and organization of the cell interior. In the in vitro motility assay (IVMA), cytoskeletal filaments are observed while being propelled by molecular motors adsorbed to artificial surfaces (e.g., in studies of motor function). Here we integrate ideas that cytoskeletal filaments may be used as nanoscale templates in nanopatterning with a novel approach for the production of surface gradients of biomolecules and nanoscale topographical features. The production of such gradients is challenging but of increasing interest (e.g., in cell biology). First, we show that myosin-induced actin filament sliding in the IVMA can be approximately described as persistent random motion with a diffusion coefficient ( D) given by a relationship analogous to the Einstein equation ( D = kT/gamma). In this relationship, the thermal energy ( kT) and the drag coefficient (gamma) are substituted by a parameter related to the free-energy transduction by actomyosin and the actomyosin dissociation rate constant, respectively. We then demonstrate how the persistent random motion of actin filaments can be exploited in conceptually novel methods for the production of actin filament density gradients of predictable shapes. Because of regularly spaced binding sites (e.g., lysines and cysteines) the actin filaments act as suitable nanoscale scaffolds for other biomolecules (tested for fibronectin) or nanoparticles. This forms the basis for secondary chemical and topographical gradients with implications for cell biological studies and biosensing
    corecore