2 research outputs found

    COD and colour removal from molasses spent wash using activated carbon produced from bagasse fly ash of Matahara sugar factory, Oromiya region, Ethiopia

    Get PDF
    The aim of this study was to investigate the removal of chemical oxygen demand (COD) and colour from a melanoidin solution using activated carbon produced from bagasse fly ash (BFA). Melanoidins are heterogeneous polymers and major contributors to the dark brown colour of molasses spent wash, which is an extensive cause of environment pollution. The surface area of the BFA was determined as 160.9 +/- 2.8m(2)/g with 90% of particle less than 156.8 mu m in size. Characterization of the BFA by Fourier transform infrared spectroscopy (FTIR) showed the presence of hydroxyl and carbonyl functional groups, whereas X-ray diffraction analysis indicated its amorphous nature. Moreover, scanning electron microscopy analysis showed a heterogeneous and irregular shape of pores. Among the adsorption isotherm models analysed, the Freundlich model fitted best to the experimental data, indicating a maximum adsorptive capacity of 124.80 mg/g. The removal of COD and colour from a melanoidin solution with this activated carbon was carried out using an experimental design taking 4 factors into account. These were adsorbent dose, contact time, pH and initial COD concentration, with removal of COD and colour as response variables. COD reduction was influenced by initial COD concentration whereas colour removal was dominated by contact time, which was in line with the findings of principal component analysis. The maximum COD removal recorded was 61.6% at the optimum condition of adsorbent dose of 4 g in 100 mL, contact time of 4 h, pH 8 and initial COD concentration 6 000 mg/L, whereas the decolourization of melanoidin solution was 64% at adsorbent dose of 4 g, contact time 4 h, pH 3 and initial COD concentration 6 000 mg/L. Hence, activated BFA is a promising option for simultaneous removal of COD and colour from molasses spent wash under the stated conditions

    Adsorption of chromium from electroplating wastewater using activated carbon developed from water hyacinth

    Get PDF
    Abstract Industrial wastewater polluted with high concentrations of Cr is commonly discharged into water resources without proper treatment. This gives rise to the deterioration of water quality and imposes adverse effects on public health. Therefore, this study is aimed at removing Cr from electroplating wastewater using activated carbon produced from water hyacinth under a full factorial experimental design with three factors and three levels (pH,2,5 and 8, adsorbent dose 0.5,1and1.5 in 100 mL and contact time 30, 60 and120 min). A phosphoric acid solution of 37% was used to activate the carbon, which was then subjected to thermal decomposition for 15 min at 500 °C. The activated carbon was characterized by the presence of a high surface area (203.83 m2/g) of BET, cracking of adsorbent beads of SEM morphology, amorphous nature of XRD, and many functional groups of FTIR such as hydroxyl (3283 cm−1), alkane (2920 cm−1), nitrile (2114 cm−1) and aromatics (1613 cm−1). The minimum Cr adsorption performance of 15.6% was obtained whereas maximum removal of 90.4% was recorded at the experimental condition of pH 2, adsorbent dose of 1.5 g/100 mL, and contact time of 120 min at a fixed value of initial Cr concentration of 100 mg/L. Similarly, the maximum Cr removal from real electroplating wastewater was 81.2% at this optimum point. Langmuir's model best described the experimental value at R2 0.96 which implies the adsorption is chemically bonded, homogeneous, and monolayer. Pseudo-second-order model best fits with the experimental data with R2 value of 0.99. The adsorbent was regenerated for seven cycles and the removal efficiency decreased from 93.25% to 21.35%. Finally, this technology is promising to be scaled up to an industrial level
    corecore