63 research outputs found

    Edaravone Guards Dopamine Neurons in a Rotenone Model for Parkinson's Disease

    Get PDF
    3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), an effective free radical scavenger, provides neuroprotection in stroke models and patients. In this study, we investigated its neuroprotective effects in a chronic rotenone rat model for Parkinson's disease. Here we showed that a five-week treatment with edaravone abolished rotenone's activity to induce catalepsy, damage mitochondria and degenerate dopamine neurons in the midbrain of rotenone-treated rats. This abolishment was attributable at least partly to edaravone's inhibition of rotenone-induced reactive oxygen species production or apoptotic promoter Bax expression and its up-regulation of the vesicular monoamine transporter 2 (VMAT2) expression. Collectively, edaravone may provide novel clinical therapeutics for PD

    Ki-67 is a strong prognostic marker of non-small cell lung cancer when tissue heterogeneity is considered

    Get PDF
    Background: Ki-67 expression is a well-established prognostic marker in various cancers. However, Ki-67 expression is also known as being heterogeneous. We investigated the prognostic significance of Ki-67 from the view of staining heterogeneity by the technique of Spiral Array. Methods. 100 cases of resected lung cancer from Toyama university hospital archive were collected. Spiral Array blocks were generated out of 100 cases using 100 μm thick paraffin sections. Four μm thick sections of the Array block were stained for Ki-67. Staining results in each reel were scored for areas with lowest (LS), highest (HS), and average (AS) expression, exclusively in the cancer cells. Heterogeneity score (HeS) was designed as the difference between HS and LS. The scores were divided into four grades (0-3). Clinical information was collected, and the prognostic significance of Ki-67 was analyzed. Results: Pathological stage was available for 91 patients (43 stage IA, 22 stage IB, 2 stage IIA, 9 stage IIB, 13 stage IIIA, 1 stage IIIB, and 1 stage IV). The HS of Ki-67 score in non-small cell lung cancer was 3 in 17 cases, 2 in 27 cases, 1 in 28 cases, 0 in 21 cases, and 4 reels were lost. 78 cases had clinical follow up. 74 cases had all the information available and were analyzed for correlation between Ki-67 expression and survival. Cases with score 2 and 3 of HS and HeS showed significant poorer prognosis (both P < 0.001), whereas LS or AS did not show significance. The results were identical when analyzing adenocarcinoma and squamous cell carcinoma, separately. Cox multivariate analysis of Ki-67 showed that HS was an independent risk factor affecting overall survival. Conclusions: Ki-67 is a strong prognostic marker for non-small cell lung cancer when the degree of highest staining frequency or heterogeneity is considered

    tRNA structural and functional changes induced by oxidative stress

    Get PDF
    Oxidatively damaged biomolecules impair cellular functions and contribute to the pathology of a variety of diseases. RNA is also attacked by reactive oxygen species, and oxidized RNA is increasingly recognized as an important contributor to neurodegenerative complications in humans. Recently, evidence has accumulated supporting the notion that tRNA is involved in cellular responses to various stress conditions. This review focuses on the intriguing consequences of oxidative modification of tRNA at the structural and functional level

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges

    Full text link

    Indices of Metabolic Dysfunction and Oxidative Stress

    Get PDF
    Abstract Metabolic alterations are a key player involved in the onset of Alzheimer disease pathophysiology and, in this review, we focus on diet, metabolic rate, and neuronal size differences that have all been shown to play etiological and pathological roles in Alzheimer disease. Specifically, one of the earliest manifestations of brain metabolic depression in these patients is a sustained high caloric intake meaning that general diet is an important factor to take in account. Moreover, atrophy in the vasculature and a reduced glucose transporter activity for the vessels is also a common feature in Alzheimer disease. Finally, the overall size of neurons is larger in cases of Alzheimer disease than that of age-matched controls and, in individuals with Alzheimer disease, neuronal size inversely correlates with disease duration and positively associates with oxidative stress. Overall, clarifying cellular and molecular manifestations involved in metabolic alterations may contribute to a better understanding of early Alzheimer disease pathophysiology
    corecore