11 research outputs found

    Magnetic excitations in two-leg spin 1/2 ladders: experiment and theory

    Full text link
    Magnetic excitations in two-leg S=1/2 ladders are studied both experimentally and theoretically. Experimentally, we report on the reflectivity, the transmission and the optical conductivity sigma(omega) of undoped La_x Ca_14-x Cu_24 O_41 for x=4, 5, and 5.2. Using two different theoretical approaches (Jordan-Wigner fermions and perturbation theory), we calculate the dispersion of the elementary triplets, the optical conductivity and the momentum-resolved spectral density of two-triplet excitations for 0.2 <= J_parallel/J_perpendicular <= 1.2. We discuss phonon-assisted two-triplet absorption, the existence of two-triplet bound states, the two-triplet continuum, and the size of the exchange parameters.Comment: 6 pages, 7 eps figures, submitted to SNS 200

    Optical spectroscopy of (La,Ca)14Cu24O41 spin ladders: comparison of experiment and theory

    Full text link
    Transmission and reflectivity of La_x Ca_14-x Cu_24 O_41 two-leg spin-1/2 ladders were measured in the mid-infrared regime between 500 and 12000 1/cm. This allows us to determine the optical conductivity sigma_1 directly and with high sensitivity. Here we show data for x=4 and 5 with the electrical field polarized parallel to the rungs (E||a) and to the legs (E||c). Three characteristic peaks are identified as magnetic excitations by comparison with two different theoretical calculations.Comment: 4 pages, 2 figures, submitted to SCES 200

    Observation of two-magnon bound states in the two-leg ladders of (Ca,La)14Cu24O41

    Full text link
    Phonon-assisted 2-magnon absorption is studied at T=4 K in the spin-1/2 two-leg ladders of Ca_14-x La_x Cu_24 O_41 (x=5 and 4) for polarization of the electrical field parallel to the legs and the rungs, respectively. Two peaks at about 2140 and 2800 1/cm reflect van-Hove singularities in the density of states of the strongly dispersing 2-magnon singlet bound state, and a broad peak at about 4000 1/cm is identified with the 2-magnon continuum. Two different theoretical approaches (Jordan-Wigner fermions and perturbation theory) describe the data very well for J_parallel = 1050 - 1100 1/cm and J_parallel / J_perp = 1 - 1.1. A striking similarity of the high-energy continuum absorption of the ladders and of the undoped high T_c cuprates is observed.Comment: 4 pages, 3 figures, Revte

    Optical study of orbital excitations in transition-metal oxides

    Get PDF
    The orbital excitations of a series of transition-metal compounds are studied by means of optical spectroscopy. Our aim was to identify signatures of collective orbital excitations by comparison with experimental and theoretical results for predominantly local crystal-field excitations. To this end, we have studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10, ranging from early to late transition-metal ions, from t_2g to e_g systems, and including systems in which the exchange coupling is predominantly three-dimensional, one-dimensional or zero-dimensional. With the exception of LaMnO3, we find orbital excitations in all compounds. We discuss the competition between orbital fluctuations (for dominant exchange coupling) and crystal-field splitting (for dominant coupling to the lattice). Comparison of our experimental results with configuration-interaction cluster calculations in general yield good agreement, demonstrating that the coupling to the lattice is important for a quantitative description of the orbital excitations in these compounds. However, detailed theoretical predictions for the contribution of collective orbital modes to the optical conductivity (e.g., the line shape or the polarization dependence) are required to decide on a possible contribution of orbital fluctuations at low energies, in particular in case of the orbital excitations at about 0.25 eV in RTiO3. Further calculations are called for which take into account the exchange interactions between the orbitals and the coupling to the lattice on an equal footing.Comment: published version, discussion of TiOCl extended to low T, improved calculation of orbital excitation energies in TiOCl, figure 16 improved, references updated, 33 pages, 20 figure

    Midinfrared absorption in YBa2Cu3O6: Evidence for a failure of spin-wave theory for spin 1/2 in two dimensions:Evidence for a failure of spin-wave theory for spin 1/2 in two dimensions

    No full text
    The optical conductivity sigma (omega) of undoped YBa2Cu3O6 is studied in detail in the mid-infrared range. Substitutions on all but the Ba site are used to identify the prominent absorption processes at 2800 and 3800 cm^-1. Experimental evidence for bimagnon-plus-phonon absorption is collected. A more critical analysis of the lineshape and the spectral weight reveals the limits of this approach. Although phonon-2-magnon multiple scattering seems to reproduce the lineshape, the necessary coupling is unrealistically large. The strong increase of high frequency spectral weight with increasing temperature makes the failure of spin-wave theory even more evident.Comment: 4 pages, 2 eps figures, Revtex, epsfi
    corecore