261 research outputs found

    Creation of resilient entangled states and a resource for measurement-based quantum computation with optical superlattices

    Full text link
    We investigate how to create entangled states of ultracold atoms trapped in optical lattices by dynamically manipulating the shape of the lattice potential. We consider an additional potential (the superlattice) that allows both the splitting of each site into a double well potential, and the control of the height of potential barrier between sites. We use superlattice manipulations to perform entangling operations between neighbouring qubits encoded on the Zeeman levels of the atoms without having to perform transfers between the different vibrational states of the atoms. We show how to use superlattices to engineer many-body entangled states resilient to collective dephasing noise. Also, we present a method to realize a 2D resource for measurement-based quantum computing via Bell-pair measurements. We analyze measurement networks that allow the execution of quantum algorithms while maintaining the resilience properties of the system throughout the computation.Comment: 23 pages, 6 figures, IOP style, published in New Journal of Physics. Minor corrections/few typos remove

    Cooling in the single-photon strong-coupling regime of cavity optomechanics

    Full text link
    In this paper we discuss how red-sideband cooling is modified in the single-photon strong-coupling regime of cavity optomechanics where the radiation pressure of a single photon displaces the mechanical oscillator by more than its zero-point uncertainty. Using Fermi's Golden rule we calculate the transition rates induced by the optical drive without linearizing the optomechanical interaction. In the resolved-sideband limit we find multiple-phonon cooling resonances for strong single-photon coupling that lead to non-thermal steady states including the possibility of phonon anti-bunching. Our study generalizes the standard linear cooling theory.Comment: 4 pages, 3 figure

    Proposal for entangling remote micromechanical oscillators via optical measurements

    Full text link
    We propose an experiment to create and verify entanglement between remote mechanical objects by use of an optomechanical interferometer. Two optical cavities, each coupled to a separate mechanical oscillator, are coherently driven such that the oscillators are laser cooled to the quantum regime. The entanglement is induced by optical measurement and comes about by combining the output from the two cavities to erase which-path information. It can be verified through measurements of degrees of second-order coherence of the optical output field. The experiment is feasible in the regime of weak optomechanical coupling. Realistic parameters for the membrane-in-the-middle geometry suggest entangled state lifetimes on the order of milliseconds.Comment: 4 pages, 2 figures + supplementary material (7 pages, 2 figs). Updates in v2: New Eq. (7) and Fig. 1 - results unchanged. Added supplementary material with various details. Updates in v3: Minor changes, journal ref. adde

    Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics

    Full text link
    Cavity optomechanical phenomena, such as cooling, amplification or optomechanically induced transparency, emerge due to a strong imbalance in the dissipation rates of the parametrically coupled electromagnetic and mechanical resonators. Here we analyze the reversed dissipation regime where the mechanical energy relaxation rate exceeds the energy decay rate of the electromagnetic cavity. We demonstrate that this regime allows for mechanically-induced amplification (or cooling) of the electromagnetic mode. Gain, bandwidth, and added noise of this electromagnetic amplifier are derived and compared to amplification in the normal dissipation regime. In addition, we analyze the parametric instability, i.e. optomechanical Brillouin lasing, and contrast it to conventional optomechanical phonon lasing. Finally, we propose an experimental scheme that realizes the reversed dissipation regime using parametric coupling and optomechanical cooling with a second electromagnetic mode enabling quantum-limited amplification. Recent advances in high-Q superconducting microwave resonators make the reversed dissipation regime experimentally realizable.Comment: 5+3 pages, 5 figures, 1 tabl

    Floquet approach to bichromatically driven cavity-optomechanical systems

    Get PDF
    We develop a Floquet approach to solve time-periodic quantum Langevin equations in steady state. We show that two-time correlation functions of system operators can be expanded in a Fourier series and that a generalized Wiener-Khinchin theorem relates the Fourier transform of their zeroth Fourier component to the measured spectrum. We apply our framework to bichromatically driven cavity optomechanical systems, a setting in which mechanical oscillators have recently been prepared in quantum-squeezed states. Our method provides an intuitive way to calculate the power spectral densities for time-periodic quantum Langevin equations in arbitrary rotating frames.A.N. holds a University Research Fellowship from the Royal Society and acknowledges additional support from the Winton Programme for the Physics of Sustainability. D.M. acknowledges support by the UK Engineering and Physical Sciences Research Council (EPSRC) under Grant No. EP/M506485/1.This is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevA.94.02380

    Optomechanical dual-beam backaction-evading measurement beyond the rotating-wave approximation

    Get PDF
    We present the exact analytical solution of the explicitly time-periodic quantum Langevin equation describing the dual-beam backaction-evading measurement of a single mechanical oscillator quadrature due to V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne [Science 209, 547 (1980)] beyond the commonly used rotating-wave approximation. We show that counterrotating terms lead to extra sidebands in the optical and mechanical spectra and to a modification of the main peak. Physically, the backaction of the measurement is due to periodic coupling of the mechanical resonator to a light-field quadrature that only contains cavity-filtered shot noise. Since this fact is independent of other degrees of freedom the resonator might be coupled to, our solution can be generalized, including to dissipatively or parametrically squeezed oscillators, as well as recent two-mode backaction-evading measurements.Royal Society (University Research Fellowship), Winton Programme for the Physics of Sustainabilit

    Emergence of continuous rotational symmetries in ultracold atoms coupled to optical cavities

    Get PDF
    We investigate the physics of a gas of ultracold atoms coupled to three single-mode optical cavities and transversely pumped with a laser. Recent work has demonstrated that, for two cavities, the Z2\mathbb{Z}_{2} symmetries of each cavity can be combined into a global U(1)U(1) symmetry. Here, we show that when adding an extra cavity mode, the low-energy description of this system can additionally exhibit an SO(3)SO(3) rotational symmetry which can be spontaneously broken. This leads to a superradiant phase transition in all the cavities simultaneously, and the appearance of Goldstone and amplitude modes in the excitation spectrum. We determine the phase diagram of the system, which shows the emergence and breaking of the continuous symmetries and displays first- and second-order phase transitions. We also obtain the excitation spectrum for each phase and discuss the atomic self-organized structures that emerge in the different superradiant phases. We argue that coupling the atoms equally to nn different modes will in general generate a global SO(n)SO(n) symmetry if the mode frequencies can be tuned to the same value

    Current rectification in a double quantum dot through fermionic reservoir engineering

    Get PDF
    Reservoir engineering is a powerful tool for the robust generation of quantum states or transport properties. Using both a weak-coupling quantum master equation and the exact solution, we show that directional transport of electrons through a double quantum dot can be achieved through an appropriately designed electronic environment. Directionality is attained through the interference of coherent and dissipative coupling. The relative phase is tuned with an external magnetic field, such that directionality can be reversed, as well as turned on and off dynamically. Our work introduces fermionic reservoir engineering, paving the way to a new class of nanoelectronic devices

    Dynamical generation of synthetic electric fields for photons in the quantum regime

    Get PDF
    Optomechanics offers a natural way to implement synthetic dynamical gauge fields, leading to synthetic electric fields for phonons and, as a consequence, to unidirectional light transport. Here we investigate the quantum dynamics of synthetic gauge fields in the minimal setup of two optical modes coupled by phonon-assisted tunneling where the phonon mode is undergoing self-oscillations. We use the quantum van-der-Pol oscillator as the simplest dynamical model for a mechanical self-oscillator that allows us to perform quantum master equation simulations. We identify a single parameter, which controls the strength of quantum fluctuations, enabling us to investigate the classical-to-quantum crossover. We show that the generation of synthetic electric fields is robust against noise and that it leads to unidirectional transport of photons also in the quantum regime, albeit with a reduced isolation ratio. Our study opens the path for studying dynamical gauge fields in the quantum regime based on optomechanical arrays
    • …
    corecore