64 research outputs found

    Functional and dysfunctional relationships at work and their impact on individual performance

    Get PDF
    The impact of workplace relationships on individual performance in the construction industry has been understudied. Nevertheless, improving individual performance is essential for project performance and gaining competitive advantage. This case study aims to study how the department climate in terms of existing relationships influence individual performance as rated by managers. Specifically, the paper presents the idea of functional and dysfunctional relationships in project-based organizations and its importance to individual performance. The case study uses data from a survey distributed to employees in one department within a global construction and engineering organization. First, different types of relationships were identified using the survey data available on frequency of knowledge sharing interactions and functional and dysfunctional relationships among the employees. Second, a social network analysis approach was used to identify centrality scores and shortest paths for both functional and dysfunctional networks. Finally, a linear regression analysis was performed to study the impact of functional and dysfunctional relationships on the individual performance. The results demonstrate that functional relationships have significant positive impact on individual performance while the dysfunctional relationships does not have any significant impact. These results have practical implications for practitioners in construction and engineering companies as they improve understanding regarding the factors affecting individual performance. Furthermore, the results contribute to theory of work climate by indicating that work climate could affect the individual performance which eventually could be a factor affecting the organizational performance

    EXCHANGE RATE VOLATILITY IN INDIAN MARKETS USING GARCH MODELS

    Get PDF
    The present study focuses on the time series behaviour of select currencies using GARCH Models. Monthly returns of currency prices exhibit aggressiveness and high degree of interdependence. In particular, generalized autoregressive conditional heteroscedastic GARCH (1, 1) processes fit to data very satisfactorily. Various out-of-sample forecasts of monthly return variances are generated and compared statistically. Forecasts based on the GARCH model are found to be superior. The common assumptions of this model is interdependence and linearity. This paper aims to model the volatility of INR exchange rates against USD for the period from January 2000 to 5 January 2023 using the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. Both symmetric and asymmetric models have been applied to measure factors that are related to the exchange rate returns such as leverage effect and volatility clustering. Based on the results, the static forecast of GJR-GARCH (1, 1) is the best model in predicting the future pattern for both INR and USD

    Nitrogen incorporation and optical studies of GaAsSbN/GaAs single quantum weil heterostructures

    Get PDF
    Cataloged from PDF version of article.In this work, the effects of N incorporation on the optical properties of GaAsSbN/GaAs single quantum wells (SQWs) have been investigated using temperature, excitation, and magnetic dependencies of photoluminescence (PL) characteristics. These layers were grown in an elemental solid source molecular beam epitaxy system with a rf plasma N source. The N concentrations in the range of 0.5%-2.5% were investigated in this study. The SQW with N similar to 0.5% exhibits a behavior similar to that in an intermediate regime where the contributions from the localized states in the band gap are dominant. The temperature and excitation dependencies of the PL characteristics indicate that for the N concentration of 0.9% and above, the alloy behavior is analogous to that of a regular alloy and the changes in optical properties are only marginal. The conduction band effective mass (m(eff)) values computed from the magnetophotoluminescence spectra using a variational formalism and the band anticrossing model are in good agreement and indicate enhanced values of m(eff). However, there is no significant variation in m(eff) values of QWs for N >= 0.9%. Small redshift of about 30-50 meV for the temperature variations from 10 to 300 K in conjunction with unusually small blueshift observed in the excitation dependence of PL for N >= 0.9% indicate that this system holds a great promise for laser applications at 1.55 mu m and beyond

    Top Arc Seam Weld Shear Strength and Stiffness for Sheet-to-sheet Connections

    Get PDF
    The North American Specification for the Design of Cold-Formed Steel Structural Members does not provide specific design guidance for sheet-to-sheet top arc seam welds in shear. A collaborative industry study has developed design guidance for both strength and stiffness of the connection to facilitate analytical evaluation of floor and roof diaphragm assemblies and wall assemblies. The test program was performed per AISI S905 and addressed material ductility, weld length, sheet thickness and the distribution of the force being transferred by the weld connection

    Structural Analysis of Highly Relaxed GaSb Grown on GaAs Substrates with Periodic Interfacial Array of 90° Misfit Dislocations

    Get PDF
    We report structural analysis of completely relaxed GaSb epitaxial layers deposited monolithically on GaAs substrates using interfacial misfit (IMF) array growth mode. Unlike the traditional tetragonal distortion approach, strain due to the lattice mismatch is spontaneously relieved at the heterointerface in this growth. The complete and instantaneous strain relief at the GaSb/GaAs interface is achieved by the formation of a two-dimensional Lomer dislocation network comprising of pure-edge (90°) dislocations along both [110] and [1-10]. In the present analysis, structural properties of GaSb deposited using both IMF and non-IMF growths are compared. Moiré fringe patterns along with X-ray diffraction measure the long-range uniformity and strain relaxation of the IMF samples. The proof for the existence of the IMF array and low threading dislocation density is provided with the help of transmission electron micrographs for the GaSb epitaxial layer. Our results indicate that the IMF-grown GaSb is completely (98.5%) relaxed with very low density of threading dislocations (105 cm−2), while GaSb deposited using non-IMF growth is compressively strained and has a higher average density of threading dislocations (>109 cm−2)

    Emission-aware Energy Storage Scheduling for a Greener Grid

    Full text link
    Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the ACM International Conference on Future Energy Systems (e-Energy 20) June 2020, Australi

    Optical studies of molecular beam epitaxy grown GaAsSbNGaAs single quantum well structures

    Get PDF
    In this work, the authors present a systematic study on the variation of the structural and the optical properties of GaAsSbNGaAs single quantum wells (SQWs) as a function of nitrogen concentration. These SQW layers were grown by the solid source molecular beam epitaxial technique. A maximum reduction of 328 meV in the photoluminescence (PL) peak energy of GaAsSbN was observed with respect to the reference GaAsSb QW. 8 K and RT PL peak energies of 0.774 eV (FWHM of ∼25 meV) and 0.729 eV (FWHM of ∼67 meV) (FWHM denotes full width at half maximum) corresponding to the emission wavelengths of 1.6 and 1.7 μm, respectively, have been achieved for a GaAsSbN SQW of N∼1.4%. The pronounced S -curve behavior of the PL spectra at low temperatures is a signature of exciton localization, which is found to decrease from 16 to 9 meV with increasing N concentration of 0.9%-2.5%. The diamagnetic shift of 13 meV observed in the magnetophotoluminescence spectra of the nitride sample with N∼1.4% is smaller in comparison to the value of 28 meV in the non-nitride sample, indicative of an enhancement in the electron effective mass in the nitride QWs. Electron effective mass of 0.065 mo has been estimated for a SQW with N∼1.4% using the band anticrossing model. © 2007 American Vacuum Society

    Abrasive water jet drilling of advanced sustainable bio-fibre-reinforced polymer/hybrid composites : a comprehensive analysis of machining-induced damage responses

    Get PDF
    This paper aims at investigating the effects of variable traverse speeds on machining-induced damage of fibre-reinforced composites, using the abrasive water jet (AWJ) drilling. Three different types of epoxy-based composites laminates fabricated by vacuum bagging technique containing unidirectional (UD) flax, hybrid carbon-flax and carbon fibre-reinforced composite were used. The drilling parameters used were traverse speeds of 20, 40, 60 and 80 mm/min, constant water jet pressure of 300 MPa and a hole diameter of 10 mm. The results obtained depict that the traverse speed had a significant effect with respect to both surface roughness and delamination drilling-induced damage responses. Evidently, an increase in water jet traverse speed caused an increase in both damage responses of the three samples. Significantly, the CFRP composite sample recorded the lowest surface roughness damage response, followed by C-FFRP, while FFRP exhibited the highest. However, samples of FFRP and hybrid C-FFRP recorded lowest and highest delamination damage responses, respectively. The discrepancy in both damage responses, as further validated with micrographs of colour video microscopy (CVM), scanning electron microscopy (SEM) and X-ray micro-computed tomography (X-ray μCT), is attributed to the different mechanical properties of the reinforced fibres, fibre orientation/ply stacking and hybridisation of the samples.Peer reviewe

    Rewriting DNA Methylation Signatures at Will:The Curable Genome Within Reach?

    Get PDF
    DNA methyltransferases are important enzymes in a broad range of organisms. Dysfunction of DNA methyltransferases in humans leads to many severe diseases, including cancer. This book focuses on the biochemical properties of these enzymes, describing their structures and mechanisms in bacteria, humans and other species, including plants, and also explains the biological processes of reading of DNA methylation and DNA demethylation. It covers many emerging aspects of the biological roles of DNA methylation functioning as an essential epigenetic mark and describes the role of DNA methylation in diseases. Moreover, the book explains modern technologies, like targeted rewriting of DNA methylation by designed DNA methyltransferases, as well as technological applications of DNA methyltransferases in DNA labelling. Finally, the book summarizes recent methods for the analysis of DNA methylation in human DNA. Overall, this book represents a comprehensive state-of-the-art- work and is a must-have for advanced researchers in the field of DNA methylation and epigenetics
    corecore