323 research outputs found

    Mixed global anomalies and boundary conformal field theories

    Full text link
    We consider the relation of mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent to gauge them i.e, take the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal boundary state invariant under the action of the center. This also gives conditions on the levels of WZW models. By considering the combined action of the center and charge conjugation on boundary states, we reproduce the condition obtained in the orbifold analysis.Comment: 24pages, 1 figure, references adde

    Quantum Entanglement of Fermionic Local Operators

    Get PDF
    In this paper we study the time evolution of (Renyi) entanglement entropies for locally excited states in four dimensional free massless fermionic field theory. Locally excited states are defined by being acted by various local operators on the ground state. Their excesses are defined by subtracting (Renyi) entanglement entropy for the ground state from those for locally excited states. They finally approach some constant if the subsystem is given by half of the total space. They have spin dependence. They can be interpreted in terms of quasi-particles.Comment: 29pages, 7 figure

    Notes on Entanglement Entropy in String Theory

    Get PDF
    In this paper, we study the entanglement entropy in string theory in the simplest setup of dividing the nine dimensional space into two halves. This corresponds to the leading quantum correction to the horizon entropy in string theory on the Rindler space. This entropy is also called the conical entropy and includes surface term contributions. We first derive a new simple formula of the conical entropy for any free higher spin fields. Then we apply this formula to computations of conical entropy in open and closed superstring. In our analysis of closed string, we study the twisted conical entropy defined by making use of string theory on Melvin backgrounds. This quantity is easier to calculate owing to the folding trick. Our analysis shows that the entanglement entropy in closed superstring is UV finite owing to the string scale cutoff.Comment: 27 pages, no figures, latex, v2: typos corrected, references adde

    EPR Pairs, Local Projections and Quantum Teleportation in Holography

    Get PDF
    In this paper we analyze three quantum operations in two dimensional conformal field theories (CFTs): local projection measurements, creations of partial entanglement between two CFTs, and swapping of subsystems between two CFTs. We also give their holographic duals and study time evolutions of entanglement entropy. By combining these operations, we present an analogue of quantum teleportation between two CFTs and give its holographic realization. We introduce a new quantity to probe tripartite entanglement by using local projection measurement.Comment: 61 pages, 24 figures. v2: comments and refs added. v3: minor correction

    Quantum Dimension as Entanglement Entropy in 2D CFTs

    Get PDF
    We study entanglement entropy of excited states in two dimensional conformal field theories (CFTs). Especially we consider excited states obtained by acting primary operators on a vacuum. We show that under its time evolution, entanglement entropy increases by a finite constant when the causality condition is satisfied. Moreover, in rational CFTs, we prove that this increased amount of (both Renyi and von-Neumann) entanglement entropy always coincides with the log of quantum dimension of the primary operator.Comment: 5 pages, 3 eps figures, Revte
    corecore