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We study the entanglement entropy of excited states in two-dimensional conformal field theories
(CFTs). In particular, we consider excited states obtained by acting on a vacuum with primary operators.
We show that the entanglement entropy increases by a finite constant amount under its time evolution.
Moreover, in rational conformal field theories, we prove that this increase of the (both Renyi and von
Neumann) entanglement entropy always coincides with the log of the quantum dimension of the primary
operator.
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Quantum field theories (QFTs) contain infinitely many
degrees of freedom and therefore we can in general define
an arbitrary number of observables. Among them, the
entanglement entropy is a very helpful quantity, especially
when we would like to study global structures of any given
quantum field theory. It is defined as the von Neumann
entropy SA ¼ −Tr½ρA log ρA� of the reduced density matrix
ρA for a subsystem A. The reduced density matrix ρA is
defined from the original density matrix ρ by tracing out the
subsystem B that is the complement of A. For example,
we can quantify topological properties by computing
topological contributions in the entanglement entropy,
the so-called topological entanglement entropy [1].
One may wonder if there is a sort of topological

contribution in the entanglement entropy even for gapless
theories, especially conformal field theories (CFTs).
The main aim of this paper is to extract such a quasito-
pological quantity from the (both Renyi and von
Neumann) entanglement entropy of excited states in
two-dimensional rational CFTs. We refer the reader to
Ref. [2] for a connection between the topological entan-
glement entropy and boundary entropy, and to Ref. [3] for
a connection between the boundary entropy and entan-
glement entropy.
The nth Renyi entanglement entropy is defined by

SðnÞA ¼ log Tr½ρnA�=ð1 − nÞ. The limit n → 1 coincides with
the (von Neumann) entanglement entropy. We are inter-

ested in the difference of SðnÞA between the excited state and

the ground state, denoted as ΔSðnÞA . Replica calculations of

ΔSðnÞA for excited states defined by local operators have
been formulated in Refs. [4–6]. In particular, we will
closely follow the construction in Ref. [5], which can be

applied to QFTs in any number of dimensions. More details

can be found in Ref. [6]. Indeed, this quantity is topological

as the late-time values of ΔSðnÞA do not change under any
smooth deformations of the subsystem A [5].
These late-time entropies are expected to measure the

degrees of freedom of a given local operator and can be
useful quantities to characterize it. They will become
important physical observables in the context of AdS/
CFT, where a simple geometrical quantity in gravity
coincides with the entanglement entropy in CFT [7]. So
far, the late-time entropies have been computed for only
free field theories [5,6], where we cannot apply the AdS/
CFT correspondence. Thus we would like to study the
simplest interacting CFTs—i.e., two-dimensional rational
CFTs—in this paper.
Consider an excited state that is defined by acting a pri-

mary operator Oa on the vacuum j0i in a two-dimensional
CFT. We employ the Euclidean formulation and introduce
the complex coordinate ðw; w̄Þ ¼ ðxþ iτ; x − iτÞ on R2

such that τ and x are the Euclidean time and space
coordinates, respectively. We insert the operator Oa at
x ¼ −l < 0 and consider its real-time evolution from time 0
to t under the Hamiltonian H. This corresponds to the
following density matrix:

ρðtÞ ¼ N · e−iHte−ϵHOað−lÞj0ih0jO†
að−lÞe−ϵHeiHt

¼ N ·Oaðw2; w2Þj0ih0jO†
aðw1; w̄1Þ; ð1Þ

where N is fixed by requiring TrρðtÞ ¼ 1. Here we have
defined

w1 ¼ iðϵ − itÞ − l; w2 ¼ −iðϵþ itÞ − l; ð2Þ
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w̄1 ¼ −iðϵ − itÞ − l; w̄2 ¼ iðϵþ itÞ − l: ð3Þ

An infinitesimal positive parameter ϵ is an ultraviolet
regularization and we treat ϵ� it as purely real numbers
until the end of calculations, as in Refs. [5,6,8].
To calculate ΔSðnÞA , we employ the replica method in the

path-integral formalism by generalizing the formulation for
ground states [3] to our excited states [5]. We choose the
subsystem A to be an interval 0 ≤ x ≤ L at τ ¼ 0. It leads to
a n-sheeted Riemann surface Σn with 2n operators Oa,
inserted as in Fig. 1. In the end, we find that ΔSðnÞA can be
computed as

ΔSðnÞA

¼ 1

1 − n
½log hO†

aðw1; w̄1ÞOaðw2; w̄2Þ � � �Oaðw2n; w̄2nÞiΣn

− n log hO†
aðw1; w̄1ÞOaðw2; w̄2ÞiΣ1

�; ð4Þ

where ðw2kþ1; w2kþ2Þ for k ¼ 1; 2; � � � ; n − 1 are n − 1
replicas of ðw1; w2Þ in the kth sheet of Σn. The term in
the second line is given by a 2n-point correlation function
on Σn. The final term is a two point function on Σ1 ¼ R2

and it is normalized such that

hO†
aðw1; w̄1ÞOaðw2; w̄2ÞiΣ1

¼ jw12j−4Δa ¼ ð2ϵÞ−4Δa ; ð5Þ

which is equal toN −1. HereΔa is the (chiral and antichiral)
conformal dimension of the operator Oa and we have
defined w12 ¼ w1 − w2.
Let us first study the n ¼ 2 case ΔSð2ÞA in detail. Later we

will generalize the results to any n. We can apply the
conformal transformation

w=ðw − LÞ ¼ zn; ð6Þ

which maps Σn to Σ1. Setting n ¼ 2 and using
Eq. (2), the coordinates zi are given by z1 ¼
−z3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − t − iϵÞ=ðlþ L − t − iϵÞp
and z2 ¼ −z4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − tþ iϵÞ=ðlþ L − tþ iϵÞp

. [Similarly, the coordinates
z̄i are given by using Eq. (3).] It is useful to define the cross
ratios as z ¼ z12z34=ðz13z24Þ; z̄ ¼ z̄12z̄34=ðz̄13z̄24Þ, where

zij ¼ zi − zj. Consider the behavior of ðz; z̄Þ in the limit
ϵ → 0. When 0 < t < l or t > Lþ l, we find ðz; z̄Þ →
ð0; 0Þ: z≃ L2ϵ2

4ðl−tÞ2ðLþl−tÞ2, z̄≃ L2ϵ2

4ðlþtÞ2ðLþlþtÞ2. In the other

case, l < t < Lþ l, we find ðz; z̄Þ → ð1; 0Þ: z≃
1 − L2ϵ2

4ðl−tÞ2ðLþl−tÞ2, z̄≃ L2ϵ2

4ðlþtÞ2ðLþlþtÞ2. Though this limit

ðz; z̄Þ → ð1; 0Þ does not seem to respect the complex
conjugate, it inevitably arises via our analytical continu-
ation of t from imaginary to real values.
Owing to the conformal symmetry, the four-point func-

tion on Σ1 can be expressed as

hO†
aðz1; z̄1ÞOaðz2; z̄2ÞO†

aðz3; z̄3ÞOaðz4; z̄4ÞiΣ1

¼ jz13z24j−4Δa · Gaðz; z̄Þ: ð7Þ

Applying the conformal map (6), we obtain the four-point
function on Σ2,

hO†
aðw1; w̄1ÞOaðw2; w̄2ÞO†

aðw3; w̄3ÞOaðw4; w̄4ÞiΣ2

¼
Y4
i¼1

jdwi=dzij−2ΔhO†
aðz1; z̄1ÞOaðz2; z̄2ÞO†

aðz3; z̄3Þ

×Oaðz4; z̄4ÞiΣ1

¼ ð4LÞ−8Δa jðz21 − 1Þðz22 − 1Þ=ðz1z2Þj8Δa ·Gaðz; z̄Þ: ð8Þ
Using this and Eq. (5), the relevant ratio is expressed as a
function which depends only on z,

hO†
aðw1; w̄1ÞOaðw2; w̄2ÞO†

aðw3; w̄3ÞOaðw4; w̄4ÞiΣ2

ðhO†
aðw1; w̄1ÞOaðw2; w̄2ÞiΣ1

Þ2
¼ jzj4Δa j1 − zj4Δa ·Gaðz; z̄Þ: ð9Þ

For example, we consider a c ¼ 1 CFT defined by a
(noncompact) massless free scalar ϕ and choose the
operators

O1 ¼ e
i
2
ϕ; O2 ¼ ðei

2
ϕ þ e−

i
2
ϕÞ=

ffiffiffi
2

p
; ð10Þ

which have the same conformal dimension Δ1 ¼ Δ2 ¼ 1
8
.

Then, the functions Gaðz; z̄Þ are found to be G1ðz;z̄Þ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijzjj1−zjp
and G2ðz; z̄Þ¼ðjzjþ1þj1−zjÞ ·G1ðz;z̄Þ=2.

It is obvious that the Renyi entropy always becomes
trivial (ΔSð2ÞA ¼ 0) for the operator O1. For O2, we find

ΔSð2ÞA ¼
�
0 ð0 < t < l or t > lþ LÞ;
log 2 ðl < t < lþ LÞ: ð11Þ

This is depicted in Fig. 2.
The reason why we find the trivial result for O1 is

because the excited state e
i
2
ϕj0i can be regarded as a direct

product state e
i
2
ϕL j0iL ⊗ e

i
2
ϕR j0iR in the left-moving (L:

chiral) and right-moving (R: antichiral) sector [5].
Therefore it is not an entangled state.

FIG. 1 (color online). The n-sheeted space Σn. The red interval
describes the subsystem A.
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On the other hand, O2 creates a maximally entangled
state (or, equivalently, an Einstein-Podolsky-Rosen state),
1ffiffi
2

p ðei
2
ϕL j0iL ⊗ e

i
2
ϕR j0iR þ e−

i
2
ϕL j0iL ⊗ e−

i
2
ϕR j0iRÞ, which

carries the Renyi entropy log 2 for any n [5]. At t ¼ 0,
we insert this operator at the point x ¼ −l, which creates an
entangled pair. The pair propagates in the left and right
directions at the speed of light. When l < t < lþ L, one
fragment stays on the subsystem A and the other on B,
which leads to the log 2 entropy. When 0 < t < l or
t > lþ L, both fragments live in B and thus the entropy
vanishes. This argument based on the causal propagations
explains the result (11).
This behavior is universal for any primary operators in

any CFTs, as is clear from Eq. (9), though the explicit value
of the Renyi entropy for l < t < lþ L depends on the
choice of operator and CFT, as we will study below.
In general CFTs, the function Gðz; z̄Þ can be expressed

using the conformal blocks [9],

Gaðz; z̄Þ ¼
X
b

ðCb
aaÞ2FaðbjzÞF̄aðbjz̄Þ; ð12Þ

where b runs over all primary fields. In our normalization,
the conformal block FaðbjzÞ behaves in the z → 0 limit as
FaðbjzÞ ¼ zΔb−2Δað1þOðzÞÞ, where Δb is the conformal
dimension of Ob.
Since we found ðz; z̄Þ → ð0; 0Þ when 0 < t < l or

t > lþ L, we get the behavior Gaðz; z̄Þ≃ jzj−4Δa, as the
dominant contribution arises when b ¼ 0, i.e., when Ob
coincides with the identity O0ð≡IÞ. Applying Eq. (9), we
get ΔSð2ÞA ¼ 0, as expected from the causality argument.
To analyze the entropy when the causality condition

l < t < lþ L is satisfied, we need to apply the fusion
transformation, which exchanges z2 with z4 (or equally z
with 1 − z),

Faðbj1 − zÞ ¼
X
c

Fbc½a� · FaðcjzÞ; ð13Þ

where Fbc½a� is a constant called the fusion matrix [10,11].
In the limit ðz; z̄Þ → ð1; 0Þ, we obtain Gaðz; z̄Þ≃ F00½a�·
ð1 − zÞ−2Δa z̄−2Δa . Therefore we find the following simple
expression from Eq. (9): ΔSð2ÞA ¼ − logF00½a�.

Moreover, in rational CFTs, based on the arguments of
bootstrap relations of correlation functions [10,12], it was
shown in Ref. [11] that F00½a� coincides with the inverse of
a quantity called the quantum dimension da,

F00½a� ¼ 1=da ¼ S00=S0a; ð14Þ
where Sab is the modular S matrix of our rational CFT.
Consider a product operator of p primary fields and
decompose it into a sum of primary fields via the fusion
rule as ½Oa�p ≃PNp

i¼1½Oi�. The quantum dimension da is
defined such that the number Np of primary fields in the
sum is given by Np ≃ ðdaÞp in the limit p → ∞. Thus, the
quantum dimension counts the averaged number of
elementary fields included in the primary operator.
In this way we obtain a remarkably simple result for two-

dimensional rational CFTs:

ΔSð2ÞA ¼ log da; ð15Þ
when l < t < lþ L.
For example, if we consider the ðpþ 1; pÞ unitary

minimal model and choose Oa to be the ðm; nÞ primary
operator [9], we can explicitly confirm Eqs. (13) and (14)
using the expressions for the four-point functions in
Ref. [13], and ΔSð2ÞA for l < t < lþ L is found to be

ΔSð2ÞA ¼ log

�ð−1Þnþm · sinðπðpþ1Þm
p Þ sinðπpnpþ1

Þ
sinðπðpþ1Þ

p Þ sinð πp
pþ1

Þ

�
: ð16Þ

The nth Renyi entanglement entropy can be obtained
from Eq. (4) by computing the 2n-point functions. Owing
to the previous discussions, since we are interested in the
nontrivial time period l < t < lþ L, we can assume the
limit L → ∞ and employ the simple conformal map
w ¼ zn. Then the 2n points z1; z2; � � � ; zn in the z coor-
dinate are given by

z2kþ1 ¼ e2πi
k
nðiϵþ t − lÞ1n ¼ e2πi

kþ1=2
n ðl − t − iϵÞ1n;

z2kþ2 ¼ e2πi
k
nð−iϵþ t − lÞ1n ¼ e2πi

kþ1=2
n ðl − tþ iϵÞ1n;

z̄2kþ1 ¼ e−2πi
k
nð−iϵ − t − lÞ1n ¼ e−2πi

kþ1=2
n ðlþ tþ iϵÞ1n;

z̄2kþ2 ¼ e−2πi
k
nðiϵ − t − lÞ1n ¼ e−2πi

kþ1=2
n ðlþ t − iϵÞ1n: ð17Þ

Then we get

hO†
aðw1; w̄1ÞOaðw2; w̄2Þ � � �Oaðw2n; w̄2nÞiΣn

ðhOaðw1; w̄1Þ†Oaðw2; w̄2ÞiΣ1
Þn

¼ Cn · hO†
aðz1; z̄1ÞOaðz2; z̄2Þ � � �Oaðz2n; z̄2nÞiΣ1

; ð18Þ

where we have defined Cn ¼ ð 4ϵ2

n2ðl2−t2ÞÞ2nΔa ·
Q

2n
i¼1ðziz̄iÞΔa .

At early time 0 < t < l, we obtain in the ϵ → 0

limit z2kþ1 − z2kþ2 ≃ − 2iϵ
nðl−tÞ z2kþ1 ¼ − 2iϵ

nðl−tÞ z2kþ2 and

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.2

0.4

0.6

0.8

1.0
S A

2

FIG. 2 (color online). The time evolution of ΔSð2ÞA for O2. We
set l ¼ 1, L ¼ 1.
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z̄2kþ1 − z̄2kþ2 ≃ 2iϵ
nðlþtÞ z̄2kþ1 ¼ 2iϵ

nðlþtÞ z̄2kþ2. In this limit the

2n-point function is factorized as follows:

hO†
aðz1; z̄1ÞOaðz2; z̄2Þ � � �Oaðz2n; z̄2nÞiΣ1

≃Yn−1
k¼0

hO†
aðz2kþ1; z̄2kþ1ÞOaðz2kþ2; z̄2kþ2ÞiΣ1

: ð19Þ

Therefore we can confirm that the ratio (18) becomes unity

and this leads to ΔSðnÞA ¼ 0.
On the other hand, at late time t > l, we find z2kþ1 −

z2k ≃ − 2iϵ
nðl−tÞ z2kþ1 ¼ − 2iϵ

nðl−tÞ z2k and z̄2kþ1 − z̄2kþ2≃
2iϵ

nðtþlÞ z̄2kþ1 ¼ 2iϵ
nðtþlÞ z̄2kþ2. In order to factorize the 2n-point

functions into n two-point functions, we need to rearrange
the order of the holomorphic coordinates ½z1; z2; � � � ; z2n�
on the right-hand side of Eq. (19) as follows:

ðz1; z2Þðz3; z4Þ � � � ðz2n−1; z2nÞ
→ ðz3; z2Þðz5; z4Þ � � � ðz1; z2nÞ:

If we decompose this procedure into bootstrap transforma-
tions of four-point functions, we can easily find that it is
realized by using the fusion transformation (13) n − 1
times, as shown in Fig. 3. Thus we obtain

hOaðz1; z̄1ÞOaðz2; z̄2Þ � � �Oaðz2n; z̄2nÞiΣ1

≃ ðF00½a�Þn−1 ·
�Yn−1
k¼0

ðz2kþ1 − z2kÞðz̄2kþ1 − z̄2kþ2Þ
�−2Δa

:

Finally, the ratio (18) at late time is computed to be
ðF00½a�Þn−1 ¼ ðdaÞ1−n. In this way, we obtain the following
simple formula:

ΔSðnÞA ¼ logda: ð20Þ

Note that for any given a, the quantum dimension da
is known to be the largest eigenvalue of the fusion matrix
ðNaÞcbð¼ Nc

abÞ. The number of primary fields contained
in the operator product of ½Oa�k is estimated as ∼ðdaÞk
when k is very large (see, e.g., Ref. [2]). Therefore it
should be interpreted as the effective degrees of freedom
included in the operator Oa and our results give a clear

manifestation of this statement using the (Renyi) entan-
glement entropy.
For example, in the Ising model [i.e., the (4,3) minimal

model], there are three primary operators: the identity I, the
spin σ, and the energy operator ψ. Since the quantum

dimension is zero for I and ψ ,ΔSðnÞA is always vanishing for

these. However, for the spin operator σ, we find ΔSðnÞA ¼
log

ffiffiffi
2

p
for any n as dσ ¼

ffiffiffi
2

p
. This fact can be explicitly

confirmed by using the identity [14]

ðhσðz1; z̄1Þσðz2; z̄2Þ � � � σðz2n; z̄2nÞiΣ1
Þ2

¼ hO2ðz1; z̄1ÞO2ðz2; z̄2Þ � � �O2ðz2n; z̄2nÞiΣ1
; ð21Þ

where O2 was defined in Eq. (10).
In conclusion, we derived the simple formula (20) which

is applicable to both the Renyi (n ≥ 2) and von Neumann
(n ¼ 1) entanglement entropies for primary-operator exci-
tations at late time. Intuitively, this result fits nicely with the
fact that the quantum dimension is a measure of the number
of elementary fields included in a given primary field. The
essence of this calculation was that the time evolution
performs the fusion transformation only in the left-moving
sector. If we consider a product of primary operatorsQ

aðOaÞna , we obtain ΔSðnÞA ¼ P
ana log da, using the

sum rule in Ref. [6]. The quantum dimension da satisfies
dadb ¼

P
cN

c
abdc.

The primary operators in our calculations can be locally
decomposed as a product of a left-moving part and a right-
moving part as Oðz; z̄Þ≃OLðzÞORðz̄Þ. Then, one may
wonder why we do not get the trivial entropy, as its excited
state is a direct product state. This puzzle is resolved by
remembering the structure of the total Hilbert space of

rational CFTs given by H ¼ P
aH

ðaÞ
L ⊗ HðaÞ

R , where the
label a runs over all conformal blocks (or, equivalently,
primary fields). Thus it is not a precise direct product
H ¼ HL ⊗ HR. This is the reason why we get the non-
vanishing entropy (20). In other words, they become
nontrivial due to a global structure of the conformal blocks
of CFTs and thus reflect a “topology” of CFTs.
Note that the topological entanglement entropy [1]

defined in the three-dimensional topological theories also
has the same contribution log da from anyons, in terms of
its equivalent two-dimensional (chiral) rational CFT which
lives on their boundary. In this sense, our results formally
look like a holographic dual of the topological entangle-
ment entropy. However, in our results, this contribution
arises in dynamical systems defined by two-dimensional
rational CFTs, where their real-time evolutions play an
important role.
It will also be very intriguing to consider higher-

dimensional generalizations of our results and work out
a direct connection to the holographic entanglement
entropy [7].

FIG. 3 (color online). The fusion transformations to obtain
ΔSðnÞA .
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