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1 Introduction

Entanglement entropy (EE) is a useful measure of the degrees of freedom in quantum many-

body systems. For example, we can use EE to detect the central charges [1–6]. Moreover,

we can detect the topological degrees of freedom of the topological field theories [7, 8]. In

recent studies, it has also been revealed that the EE can measure the degrees of freedom

of local operators [9–14].

To calculate EE in field theories, there is a well-known method called the replica

method, by which the calculation of EE returns to the calculation of partition functions

on the space with conical defects. In field theories, entanglement entropy has the area

law UV divergences [15, 16] because each Hilbert space exists on the point in a space

and there are contributions from entanglement between infinitely small separated Hilbert
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spaces. Therefore usually we introduce the UV cut off parameter ε (lattice spacing) and

we only consider the entanglement between the Hilbert space more separated than ε. In

the string theory, the theory has a parameter of sting length ls =
√
α′ beyond which there

is no more small structure. Thus it is a natural question how the results are changed if

we consider the string theory instead of such local quantum field theories. It is natural

to expect that the cut off scale ε is replaced by string parameter α′ and that the EE in

string theory becomes UV finite. By combining this observation with the area law, we may

expect the following behavior of the EE in superstring (we assume V8 ≫ α′4):

SA = s · V8

α′4 + · · ·, (1.1)

where V8 is the area of the boundary of the subsystem A and s is a O(1) constant; the

omitted terms · · · denote the sub-leading contributions in the limit α′ → 0. Indeed this

interesting problem has been discussed in early papers [17–24] because the entanglement

entropy in string theory is expected to be equal to the quantum corrections to the black

hole entropy. Nevertheless, there have been no explicit evaluations of EE in string theory

done until now as far as the authors of the present paper know. This is the main motivation

of this paper.

In this paper we focus on the EE between a half of the total space and the other half

in the ten dimensional flat space R1,9. At first, one may worry that it may be difficult to

define EE in string theory using this real space division because the theory itself is non-local.

However, there is one clear definition by the replica method, generalizing computations of

EE in field theories, and we will employ this idea. In this paper, we will not get into serious

considerations of the original definition of EE in terms of Hilbert space factorizations in

string theory. In the replica method, we need partition functions on n-replicated manifolds.

If we replace the replica number n with a fractional number 1/N , then the manifold behaves

like an orbifold C/ZN times R8. Though we are not familiar with string theory on the

spacetime defined by the n-sheeted replica manifold, we know string theory on orbifold

backgrounds very well. Therefore we would like to evaluate the EE in string theory by

analyzing orbifolds. Because the orbifolds break spacetime supersymmetries, tachyonic

modes appear from the twisted sectors [21, 23] and thus the Rényi entanglement entropy

(REE) naively gets divergent. However, to calculate (von-Neumann) entanglement entropy,

we only need the derivative w.r.t. N at N = 1. Since we only need the behavior around the

N = 1 point where the supersymmetry is kept, we can still expect that in superstring, the

entanglement entropy becomes finite. To properly analyze the Rényi entanglement entropy

we would need to take into account the effect of closed string tachyon condensation properly

(see e.g. [25–29] for earlier analysis of localized closed string tachyon condensations ).

Since string theory contains infinitely many higher spin fields, the EE in string theory

contains contributions from all such higher spin fields. In the calculations of EE for spin

one (Maxwell field) or higher spin fields, there is a subtle issue related to the surface term

contributions. For example, in the Maxwell theory, if we calculation the entanglement

entropy using the replica method, we find that the resulting entropy is negative due to

a surface term [30]. Recently this term is interpreted as that produced by edge modes

– 2 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
6

localized at the entangling surface [31, 32]. A similar surface term exists for spin 3/2 and

2 fields and moreover there appear new topological contributions to the EE for spin 2

fields as shown in [33]. Such a entropy, which is directly obtained from the replica method

and can be negative, is called the conical entropy. This conical entropy evaluated at one

loop (torus) string amplitudes gives the quantum corrections to black hole entropy, while

the Bekenstein-Hawking formula [34, 35] is explained by the conical entropy at tree level

(sphere) string amplitudes [20, 36]. Since the conical entropy (at one loop) has negative

surface contributions, it has been conjectured in [20] that the conical entropy may vanish in

string theory backgrounds with enough supersymmetries i.e. s = 0 in (1.1). More generally,

the conical entropy is identified with quantum corrections to the holographic entanglement

entropy formula [3, 37, 38] as recently argued in [39]. In this paper, we will calculate the

conical entropy at one loop level for any free higher spin fields using our orbifold method,

which largely generalize the result [33], and then apply our results to conical entropies in

open and closed (super)string theory.

To calculate the conical entropy in closed string theory, we need to evaluate torus par-

tition functions as the explicit function of N in order to obtain an analytical continuation.

In closed string theory, there are not only the ZN projection but also the summation over

twisted sectors. Thus we need to perform two summations in order to analytically continue

w.r.t. N , which is technically very difficult. To avoid the double summation about g ∈ ZN ,

we compactify one direction to S1 and also twist this direction by ZN . Then, type II string

theory on this orbifold is related to the string theory in the Melvin background [28, 40–46]

under the T-duality transformation. Indeed, it was shown that the small radius limit of

string theory on the Melvin background is equivalent to the C/ZN orbifold theory [45, 46].

This definition of conical entropy leads to a modification of the standard conical entropy

because of the twisting in the S1 direction. Therefore we call this new quantity the twisted

conical entropy. In this paper we will analyze the (twisted) conical entropy in type II

string theory.

The plan of this paper is as follows. In section 2 we will compute the conical entropy

for free field theories with arbitrary high spins. In section 3 we will investigate the conical

entropy for open string theories in bosonic string and superstring. In section 4, we will

define the conical entropy for closed superstring theory. We will explicitly evaluate the

twisted conical entropy in type II superstring theory using Melvin background. We will

analyze its convergence. We will also comment about the effect of twisting about S1

direction. In section 5 we draw conclusions and discuss the future problems. In appendix,

we follow the technical detail about the folding trick and about the summation needed in

section 4.

2 EE for free fields with arbitrary higher spins

Before we start to analyze conical entropy (EE) in string theory, we would like to study

the EE in free field theories with arbitrary spins using the first quantization approach. The

EE in string theory can be analyzed in the parallel way as we will see later sections.
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We express the partition function of a free field theory on the spacetime M at the first

quantized level as Zf (M). In the second quantization approach, this corresponds to the

logarithm of partition function Zs(M) (see e.g. [47]);

logZs(M) = Zf (M). (2.1)

Then we especially take a free field theory on the D dimensional flat space M = RD, whose

coordinate denoted by (x0, x1, · · ·, xD−1). Here we consider an Euclidean continuation such

that x0 is the Euclidean time. We define the subsystem A to be x1 > 0. Then combining

(x0, x1) into a complex plane C, we can introduce the n-th Rényi entanglement entropy

(REE) , denoted by S
(n)
A , via an analytic continuation n = 1/N from the orbifolds C/ZN

as follows (refer to [48])

S
(n)
A =

1

1− n

[

Zf (C/ZN ×RD−2)− 1

N
Zf (C ×RD−2)

]
∣

∣

∣

∣

N= 1
n

. (2.2)

The ZN orbifold action g is given by

g : (X, X̄) → (e
2πi
N X, e

−2πi
N X̄). (2.3)

2.1 Entanglement entropy for free scalar

First we consider the EE for a free massive scalar field. The partition function of a spinless

particle on the flat space is given by

Zf (RD) =

∫ ∞

ǫ2

ds

2s
Tr e−s(k̂2+m2) =

VD

(2π)D

∫ ∞

ǫ2

ds

2s

∫

dDk e−s(k2+m2)

= VD

∫ ∞

ǫ2

ds

2s
(4πs)−

D
2 e−sm2

, (2.4)

where the parameter s is the Schwinger parameter which can be seen as a moduli in the first

quantization approach. Here, the trace is taken in the Hilbert space of one particle quantum

mechanics and we choose the momentum eigenfunction |~k〉 as the base. To obtain the

partition function on ZN orbifold , we need to take the trace over the subspace symmetric

under the orbifold action. This can be done by inserting the projection operator;

Zf (C/ZN ×RD−2) =

∫ ∞

ǫ2

ds

2s
Tr

1

N

N−1
∑

j=0

gj e−s(k̂2+m2)

=

∫ ∞

ǫ2

ds

2s

∫

dDk
1

N

N−1
∑

j=0

〈~k| gj |~k〉 e−s(k2+m2). (2.5)

Here g is the generator of ZN . We can evaluate 〈~k| gj |~k〉 for j 6= 0 as follows:

〈~k| gj |~k〉 = δD(~k − gj · ~k) = VD−2

(2π)D−2

1

4 sin2 πj
N

δ(k0)δ(k1). (2.6)

If we use the formula
N−1
∑

j=1

1

sin2 πj
N

=
N2 − 1

3
, (2.7)
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we get the final expression for the REE;

S
(n)
A =

(n+ 1)πVD−2

6n

∫ ∞

ǫ2

ds

(4πs)
D
2

e−m2s. (2.8)

Especially the coefficient VD−2 shows the area law of REE.

2.2 Analysis of bosonic higher spin fields

Next, we consider the generalization to other free fields with higher spins. First, we consider

the bosonic fields. If the particle is fermion, a further modification is needed compared

to the case of bosons as we will discuss in the next subsection. To get the representation

for bosonic fields with any spins, we need to introduce the internal space of spin which

corresponds to the components of the field. From this the base of Hilbert space is changed

from |~k〉 to |~k, a〉 = |~k〉 ⊗ |a〉 where {|a〉} is the basis of the internal space. In this case,

although the internal space doesn’t affect the energy of particle but the orbifold group ZN

acts on this space and thus the summation (2.7) should be changed. The final expression

is given by

Zf (C/ZN ×RD−2) =

∫ ∞

ǫ2

ds

2s
Tr

1

N

N−1
∑

j=0

gj e−s(k̂2+m2)

=

∫ ∞

ǫ2

ds

2s

∫

dDk
1

N

N−1
∑

j=0

Na
∑

a=1

〈~k, a| gj |~k, a〉 e−s(k2+m2). (2.9)

where Na is the number of components and F is the fermion number. 〈~k, a|gj |~k, a〉 can be

evaluated for j 6= 0 as follows:

〈~k, a|gj |~k, a〉 = VD−2

(2π)D−2

e
2πijsa

N

4 sin2 πj
N

δ(k0)δ(k1). (2.10)

Here sa is the spin of SO(2) ⊂ SO(D) which is the rotation of (x0, x1) plane.

In this way we find that the basic summation formula which we can employ to calculate

the entanglement entropy for free bosons is

I(r,N) =
N−1
∑

β=1

cos
(

2πβr
N

)

sin2
(

πβ
N

) =
1

3

[

N2 − 1 + 6N2

(

{ r

N

}2
−
{ r

N

}

)]

, (2.11)

where {x} denotes the fractional part of x i.e. {x} = x − [x]. Here we defined an integer

r by

r = sa. (2.12)

2.3 Analysis of fermionic higher spin fields

If the particle is a fermion, we need an overall minus sign because (2.1) needs minus sign

in front of Zf which follows from fermionic functional determinant. Also N should be an

odd number in the case of fermions [45]. gN is not equal to 1 due to sa is a half integer,
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while we have g2N = 1. Therefore we cannot regard it as a ZN orbifold for even N . On

the other hand, for N odd, we obtain a ZN orbifold by choosing g2 as the generator of ZN

action, even in the presence of fermions. In this way, we find the final expression, which

can be applicable to both a free boson and fermion, as follows:

Zf (C/ZN ×RD−2) = (−1)F
∫ ∞

ǫ2

ds

2s
Tr

1

N

N−1
∑

j=0

g2j e−s(k̂2+m2)

= (−1)F
∫ ∞

ǫ2

ds

2s

∫

dDk
1

N

N−1
∑

j=0

Na
∑

a=1

〈~k, a| g2j |~k, a〉 e−s(k2+m2). (2.13)

where Na is the number of components and F is the fermion number. 〈~k, a|g2j |~k, a〉 can

be evaluated for j 6= 0 by changing j in (2.10) to 2j;

〈~k, a|g2j |~k, a〉 = VD−2

(2π)D−2

e
2πir
N

4 sin2 2πj
N

δ(k0)δ(k1). (2.14)

When we calculate entanglement entropy for fermion, we need the following formula:

J(r,N) =
N−1
∑

β=1

cos
(

2πβr
N

)

sin2
(

2πβ
N

) , (2.15)

where we set r = 2sa as in (2.12).

We can show that this summation is given as follows. When r is an odd integer (i.e.

fermions)

J(r,N)|r∈odd =
1

3
(N2 − 1) + 2N2

[

{

r +N

2N

}2

−
{

r +N

2N

}

]

. (2.16)

On the other hand, when r is an even integer (i.e. bosons), we find

J(r,N)|r∈even =
1

3
(N2 − 1) + 2N2

[

{ r

2N

}2
−

{ r

2N

}

]

. (2.17)

One can confirm that in the bosonic case the formula is just the same with (2.11). It is

easy to confirm J(r, 1) = 0 for any r.

For a specific values of (r,N), we find

J(r,N)|r∈odd = −N2

6
+

r2

2
− 1

3
(−N ≤ r ≤ N), (2.18)

J(r,N)|r∈even =
N2

3
− rN +

r2

2
− 1

3
(0 ≤ r ≤ 2N). (2.19)

Note that J(r,N) is analytic for all N ≥ 1 only if r = 0, 1, 2, where (2.18) and (2.19) can

always be applied. This leads to a subtle issue for fields with spins higher than 3/2.
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2.4 Conical entropy for higher spin fields

Because the sums (2.16) and (2.17) are not analytic functions of N in general, we need to

define a rule how to take the derivative with respect to N . Here we choose to take the

derivative w.r.t. N by employing the formula (2.18) and (2.19), which are true when N

is large, as if they were correct even at N = 1. An advantage is that we can deal with

analytic functions though they do not satisfy J(1, r) = 0. This leads to

∂J(r,N)

∂N

∣

∣

∣

∣

∣

N=1

= −1

3
, (r ∈ odd) (2.20)

∂J(r,N)

∂N

∣

∣

∣

∣

∣

N=1

=
2

3
− |r| (r ∈ even). (2.21)

As we will see below, this prescription correctly reproduces the independent calculations

of conical entropy in [30, 33] for spin 0, 1/2, 1, 3/2 and 2.

Then, applying this formula to calculate the conical entropy of free field theories in D

dimension, we obtain the following form

SA = cent · VD−2

∫ ∞

ǫ2

ds

2s(4πs)
D−2
2

e−m2s, (2.22)

where the coefficient cent is computed as follows

cent =
1

4
(−1)F

∑

a

∂

∂N

[

J(2sa, N)

N
− J(2sa, 1)

N

]

∣

∣

∣

∣

∣

N=1

=
1

4
(−1)F

∑

a

∂J(2sa, N)

∂N

∣

∣

∣

∣

∣

N=1

, (2.23)

where a runs all spin components of the field.

For fermions, ∂J
∂N |N=1 does not depend on the spin s = r/2 and we always get

cFermion
ent =

1

12
· [#Majorana spin components]. (2.24)

This agrees with the know results for spin 1/2 [30] and 3/2 [33].

On the other hand, for bosons, ∂J
∂N |N=1 depends on the spin and we get

cBoson
ent =

1

6
Ndof − 1

2

Ndof
∑

a=1

|sa|, (2.25)

where Ndof denotes the number of components i.e. the number of real bosons and the

number of Majorana fermion component and |sa| denotes the SO(2) spin of a component.

For example, a real scalar has Ndof = 1 and s1 = 0, which leads to

cent(Scalar) =
1

6
· [#real scalars]. (2.26)
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For a D dimensional U(1) gauge field (without ghosts), we have Ndof = D, s1 = −s2 =

1 and s3 = s4 = · · · = sD = 0, which leads to

cent(Gauge) =
1

6
·D − 1. (2.27)

This agrees with the result in [30] (by removing the ghost contributions).

For the spin 2, which is a graviton field gµν , we can count the contributions in the

same way. We find the values of SO(2) spin s and the number of components as follows:

s = 2 : 1,

s = −2 : 1,

s = 1 : D − 2,

s = −1 : D − 2,

s = 0 :
D2 − 3D + 4

2
. (2.28)

Therefore the total contribution to the EE is found as

cent(Spin2) = 2·
(

1

6
− 1

)

+2(D−2)·
(

1

6
− 1

2

)

+
D2 − 3D + 4

2
·1
6
=

1

6
·D(D + 1)

2
−D. (2.29)

This agrees with the BH entropy calculation in [33].

To see the relation to [33] more directly (note β = 2π/N in [33]), let us remind that the

coefficient A
(j)
1 for a spin j field is defined by the coefficient in the heat kernel expansion:

logZ(j) = (−1)F
∫ ∞

ǫ2
e−m2s · (4πs)−D/2

(

A
(j)
0 + sA

(j)
1 + · · ·

)

∫

RD−2

, (2.30)

where
∫

RD−2 denotes the volume of RD−2. Then we find that A
(j)
1 behaves when N ≃ 1 as

follows in the Taylor expansion of the powers of N − 1:

A
(j)
1 = Q(j) + 4πc

(j)
1 (N − 1) +O

(

(N − 1)2
)

, (2.31)

where the constant Q(j) denotes a singular contribution, which is non-zero only for j ≥ 3/2.

This leads to the conical entropy (we set cent = (−1)2jc
(j)
ent in (2.22)):

SA = (−1)F · c(j)ent · VD−2

∫ ∞

ǫ2

ds

2s(4πs)
D−2
2

e−m2s, (2.32)

where c
(j)
ent is given by

c
(j)
ent = 4πc

(j)
1 +Q(j). (2.33)

The term Q(j) looks like a somewhat topological contribution analogous to the boundary

entropy [2, 49] and the topological entanglement entropy [7, 8].

It is also easy to compare this definition to our summation J(r,N) in the orbifold

method:

A
(j)
1 = π · J

(j)
tot(N)

N
. (2.34)

– 8 –
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Here Jtot(N) is the summation of J(r,N) for all components:

J
(j)
tot(N) =

∑

a

J(2sa, N), (2.35)

where sa is SO(2) spin for each component of the spin j field.

For the spin 0 (scalar) and spin 1/2 (Majorana fermion) we find

J
(0)
tot (N) = J(0, N) =

N2 − 1

3
,

J
(1/2)
tot (N) = J(1, N) ·Nf = −N2 − 1

6
·Nf , (2.36)

where Nf is the number of components of Majorana spinor. This agrees with

A
(0)
1 =

π

3N
(N2 − 1), A

(1/2)
1 = −Nf

2
·A(0)

1 . (2.37)

For the spin 1, 3/2 and 2 we find

πJ
(1)
tot (N) = 2 · πJ(2, N) + (D − 2)πJ(0, N) = N

(

D ·A(0)
1 + 4π(1/N − 1)

)

,

πJ
(3/2)
tot (N) = Nf · πJ(3, N) +Nf · (D − 1)π · J(1, N) = N

(

−Nf

2
A

(0)
1 D +

4π

N
Nf

)

,

πJ
(2)
tot (N) = 2πJ(4, N) + 2(D − 2)πJ(2, N) +

D2 − 3D + 4

4
πJ(0, N)

= N

(

D(D + 1)

2
·A(0)

1 + 4π(D + 2)(1/N − 1) + 8π

)

. (2.38)

All of these agree with (2.10)-(2.13) in [33]. Notice that our derivation is much simpler as

the calculation is essentially reduced to the evaluation of J(r,N).

2.5 Thermal entropy in Rindler space for higher spin fields

In the previous subsection, we took the derivative of J(r,N) assuming N is sufficiently

large compared to r and interpolated the result to N = 1. If we take the derivative w.r.t.

N by assuming N is extremely large and by ignoring r dependent term, we get

∂J(r,N)

∂N

∣

∣

∣

∣

∣

N=1

= −1

3
, (r ∈ odd)

∂J(r,N)

∂N

∣

∣

∣

∣

∣

N=1

=
2

3
(r ∈ even). (2.39)

In this calculation, there are no spin dependent terms and all fields contribute to entangle-

ment entropy universally:

cent(fermion) =
1

12
· [#Majorana spin components] (2.40)

cent(boson) =
1

6
· [#components] (2.41)

This calculation corresponds to ignoring the surface terms and picking up the thermody-

namical entropy in the Rindler space.
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3 Conical entropy in open string

In this section we will start our analysis of conical entropy in string theory by studying

open string theories briefly.

3.1 Conical entropy in open bosonic string

The Bosonic openstring vacuum amplitude in the orbifold theory C/ZN ×R24 is given by

(we subtract the N = 1 result)

Zopen[C/ZN ×R24]− 1

N
Zopen[C ×R24]

= V24

∫

dt

2t
(4π2α′t)−12

N−1
∑

β=1

1

N sin
(

πβ
N

)

θ1

(

β
N |it

)

η(it)23
, (3.1)

where the theta function is given by

θ1(x|it) = 2e−
π
4
t sin(πx)

∞
∏

n=1

(1− e−2πtn)(1− e−2πtn+2πix)(1− e−2πtn−2πix). (3.2)

Therefore we need to perform the following summation:

Iopen(N) =
N−1
∑

β=1

1

sin
(

πβ
N

)

θ1

(

β
N |it

) . (3.3)

Then the conical entropy can be found as

SA = V24

∫

dt

2t
(4π2α′t)−12 1

η(it)23
· ∂Iopen(N)

∂N

∣

∣

∣

∣

∣

N=1

, (3.4)

By expanding Iopen(N) w.r.t. the powers of q = e−2πt we obtain

Iopen(N)=
1

2
· eπt/4
∏∞

n=1(1− e−2πnt)
·
N−1
∑

β=1

1

sin2
(

πβ
N

)

∞
∏

n=1





∞
∑

pn=0

∞
∑

qn=0

e2πi
β
N
(pn−qn) ·e−2πnt(pn+qn)



 .

(3.5)

Since Iopen is real valued we find

Iopen(N) =
1

2
· eπt/4
∏∞

n=1(1− e−2πnt)
·
N−1
∑

β=1

1

sin2
(

πβ
N

)





∞
∑

~p=0

∞
∑

~q=0

cos

(

2π
β

N

∞
∑

n=1

(pn − qn)

)

· e−2πt
∑∞

n=1 n(pn+qn)



 . (3.6)

Now we take the derivative w.r.t. N and take the limit N = 1 using the formula (2.21)

we obtain

∂Iopen(N)

∂N

∣

∣

∣

N=1

=
1

2
· eπt/4
∏∞

n=1(1−e−2πnt)
·





∞
∑

~p=0

∞
∑

~q=0

(

2

3
−2

∣

∣

∣

∣

∣

∞
∑

n=1

(pn−qn)

∣

∣

∣

∣

∣

)

· e−2πt
∑∞

n=1 n(pn+qn)



. (3.7)
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Unfortunately it seems difficult to make the above expression simpler. However, it is clear

that the conical entropy (3.4) has divergences due to the closed string tachyon.

3.2 Conical entropy in open superstring

The superstring amplitude in the orbifold theory C/ZN ×R8 is given by (we subtract the

N = 1 result)

Zopen[C/ZN ×R8]− 1

N
Zopen[C ×R8]

= V8

∫

dt

2t
(4π2α′t)−4

N−1
∑

β=1

θ1

(

β
N |it

)4

N sin
(

2πβ
N

)

θ1

(

2β
N |it

)

η(it)9
(3.8)

Therefore we need to take the summation:

Jsusy
open =

N−1
∑

β=1

θ1(
β
N |it)4

sin(2πβN )θ1(
2β
N |it)

(3.9)

To evaluate conical entropy, we use Jacobi identity to separate the contribution from bosons

and that of fermions:

4
∏

a=1

θ3(νa|τ)−
4
∏

a=1

θ2(νa|τ)−
4
∏

a=1

θ4(νa|τ) +
4
∏

a=1

θ1(νa|τ) = 2
4
∏

a=1

θ1(ν
′
a|τ). (3.10)

Here we have defined

2ν ′1 = ν1 + ν2 + ν3 + ν4, 2ν ′2 = ν1 + ν2 − ν3 − ν4 (3.11)

2ν ′3 = ν1 − ν2 + ν3 − ν4, 2ν ′4 = ν1 − ν2 − ν3 + ν4 (3.12)

and θ2(ν|τ), θ3(ν|τ), θ4(ν|τ) is given by

θ2(ν, τ) =
∞
∑

n=−∞
q(n−

1
2
)2zn−

1
2 (3.13)

θ3(ν, τ) =

∞
∑

n=−∞
qn

2
zn (3.14)

θ4(ν, τ) =
∞
∑

n=−∞
(−1)nqn

2
zn (3.15)

where q = e2πiτ and z = e2πiν . Using these formula and expanding the powers of q = e−2πt
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Jsuzy
open becomes as follows

Jsusy
open =

1

4

eπt/4
∏∞

n=1(1− e−2πnt)
·
N−1
∑

β=1

1

sin2(πβN )

×
[

θ3(0|it)3
∑

m∈Z

∞
∑

~p=0

∞
∑

~q=0

cos

(

2π
β

N

∞
∑

n=1

(pn − qn +m)

)

· e−2πt(
∑∞

n=1 n(pn+qn)+m2/2)

−θ4(0|it)3
∑

m∈Z

∞
∑

~p=0

∞
∑

~q=0

(−1)m cos

(

2π
β

N

∞
∑

n=1

(pn−qn+m)

)

· e−2πt(
∑∞

n=1 n(pn+qn)+m2/2)

−θ2(0|it)3
∑

m∈Z

∞
∑

~p=0

∞
∑

~q=0

cos

(

2π
β

N

∞
∑

n=1

(

pn−qn+m− 1

2

))

·e−2πt(
∑∞

n=1 n(pn+qn)+(m− 1
2
)2/2)

]

.

(3.16)

Now we take the derivative w.r.t.N and take the limitN = 1 using the formula (2.20) (2.21)

we obtain

∂Jsusy
open

∂N

∣

∣

∣

N=1
=

1

4

eπt/4
∏∞

n=1(1− e−2πnt)
·
N−1
∑

β=1

1

sin2(πβN )

×
[

θ3(0|it)3
∑

m∈Z

∞
∑

~p=0

∞
∑

~q=0

(

2

3
−
∣

∣

∣

∣

∣

∞
∑

n=1

(pn − qn +m)

∣

∣

∣

∣

∣

)

· e−2πt(
∑∞

n=1 n(pn+qn)+m2/2)

−θ4(0|it)3
∑

m∈Z

∞
∑

~p=0

∞
∑

~q=0

(−1)m

(

2

3
−
∣

∣

∣

∣

∣

∞
∑

n=1

(pn − qn +m)

∣

∣

∣

∣

∣

)

· e−2πt(
∑∞

n=1 n(pn+qn)+m2/2)

+
1

3
θ2(0|it)3

∑

m∈Z

∞
∑

~p=0

∞
∑

~q=0

e−2πt(
∑∞

n=1 n(pn+qn)+(m− 1
2
)2/2)

]

.

(3.17)

This results is not vanishing unless some miraculous cancellations occur, though the

superstring vacuum amplitude is zero. This is because the orbifold does not preserve

supersymmetry and the partition function does not become 0 if N 6= 1. Moreover, we

find that conical entropy in open superstring has the UV divergence due to the t integral.

This is simply understood as follows. The above evaluation can be regarded as a simple

summation of conical entropy for all higher spin fields and thus it is a sum of the area law

divergences. This fact that the open string conical entropy is divergent shows that we need

to take into account the backreaction of open string sectors to closed string sectors. We

expect that we can get a finite conical entropy if we can treat this backreaction properly,

though this is beyond the scope of this paper. This issue motivates us to study the conical

entropy in closed string.

4 (Twisted) conical entropy in closed superstring

In this section we study the main problem of this paper: conical entropy in type II closed

superstring. We will focus on the contributions from the torus amplitude, which lead to
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the leading quantum corrections, while the contribution from the sphere amplitude are

expected to lead to the Bekenstein-Hawking formula [20]. We will start from a definition

of conical entropy. Then we will introduce a twisted conical entropy, which is easier to

evaluate and we will analyze this quantity in detail.

4.1 Definition of conical entropy in closed superstring

We express the partition function of closed string theory on the spacetime M at the first

quantized level as Zclosed(M). We especially focus on type II string theory on the flat space

M = R10, whose coordinate denoted by (x0, x1, · · ·, x9). We define the subsystem A to be

x1 > 0. Then combining (x0, x1) into a complex plane C, we can introduce the n-th Renyi

entanglement entropy (EE) of string theory, denoted by S
(n)
A , as follows

S
(n)
A =

1

1− n

[

Zclosed(C/ZN ×R8)− 1

N
Zclosed(C ×R8)

]
∣

∣

∣

∣

N= 1
n

, (4.1)

where C/ZN is the standard ZN orbifold in type II string. The ZN orbifold action g is

given by

g : (X, X̄) → (e
2πik
N X, e

−2πik
N X̄), (4.2)

where k is a positive integer fixed below. We are especially interested in n = 1 (i.e. N = 1)

limit, being equivalent to the von-Neumann entropy. In order to have ZN orbifold in type

II string, N should be an odd integer and k should be an even integer [25, 45]. Thus we

will set k = 2 without losing generality.

The partition function of type II string on C/ZN ×R8 is given by (refer to [20–24] for

earlier works)

Zclosed(C/ZN ×R8)

= V8

∫

F

dτ2

4τ2
· (4π2α′τ2)

−4 ·
N−1
∑

l,m=0

|θ1(νlm/2|τ)|8
N |η(τ)|18|θ1(νlm|τ)|2 , (4.3)

where νlm = k(l−mτ)
N .

4.2 Twisted conical entropy from Melvin background

If we want to evaluate the conical entropy directly from the C/ZN orbifold amplitude (4.3),

we need to perform the two summations with respect to l and m. Since this looks rather

hard, we would like to focus on a modified quantity which can be computed in an easier way.

For this purpose, we would like to consider superstring on so called Melvin background

defined in [42–44]. Though there are several ways to introduce Melvin backgrounds, the

most simple one which fits nicely with our purpose is the one defined as a ZN orbifold (or

called a twisted circle):

Melvin background : (C × S1)/ZN ×R7, (4.4)

where the radius of the circle S1 before the ZN orbifold is defined to be NR. In the above,

the ZN orbifold action g is defined by

g : (X, X̄, y) → (e
2πik
N X, e

−2πik
N X̄, y + 2πR), (4.5)

– 13 –
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where R is the radius of the Melvin background. Again in type II string, k is an even

integer, while N is an odd integer. We can set k = 2 without losing generality.

We can explicitly show that the Melvin background (4.4) is reduced to the original

orbifold C/ZN × S̃1 × R7 [45, 46] if we take the small radius limit R → 0 using the

T-duality. The radius of the T-dualized circle S̃1 is given by Rorb =
α′

NR .

Now we define the twisted conical entropy as follows:

S̃
(n)
A =

1

1− n

[

Zclosed

[

(C × S1)/ZN ×R7
]

− 1

N
Zclosed

[

C × S1 ×R7
]

]

∣

∣

∣

∣

∣

n=1/N

. (4.6)

The von-Neumann entropy limit N = 1 can be computed as

S̃A ≡ S̃
(1)
A = Zclosed

[

C × S1 ×R7
]

+
∂

∂N
Zclosed

[

(C × S1)/ZN ×R7
]

∣

∣

∣

N=1
, (4.7)

where the first term in the right hand side is vanishing due to the supersymmetries. Note

that we choose the radius of S1 (before the orbifold projection) in (C × S1)/ZN × R7 to

be NR = α′

Rorb
, while that in C × S1 × R7 to be R = α′

Rorb
. When we take the derivative

w.r.t. N in (4.7), we keep Rorb fixed, motivated by the original definition (4.1). Based on

this definition, we will work out the twisted conical entropy from the partition function in

Melvin model in the coming subsections.

4.3 Partition function in Melvin model and conical entropy

The partition function of Melvin model [44] is given by

Zclosed

[

(C×S1)/ZN×R7
]

=Z0·
∫

F

dτ2

τ52

∞
∑

w′,w=−∞
e
− πR2

α′τ2
|w−w′τ |2· |θ1((w − w′τ)/N |τ)|8

|η(τ)|18|θ1(2(w−w′τ)/N |τ)|2 ,

(4.8)

where Z0 = V7R
4(2π)7α′4 . The region F represents the standard fundamental region of the

torus moduli space. After some algebras we can easily see that for a large radius R, there

are no closed string tachyons, while for a small R there exist tachyons in the twisted

sectors [28, 44] so that in the small radius limit R → 0 the theory is reduced to that for

the orbifold C/ZN ×R8 [45, 46].

By using the folding procedure given in the appendix A, we can equivalently replace one

of the two summations in the partition function as the summation over integration domains,

which are obtained by the SL(2,Z) modular transformations of the fundamental region F .

This enables us to rewrite it as the integral over the strip S defined by −1/2 < τ1 < 1/2

and τ2 > 0, with a single sum:

Zclosed

[

(C × S1)/ZN ×R7
]

= Z0

∫

S

dτ2

τ52

∞
∑

w=−∞
e
− πR2

α′τ2
w2

· |θ1(w/N |τ)|8
|η(τ)|18 · |θ1(2w/N |τ)|2 , (4.9)

where the integral region S denotes the strip defined by −1/2 < τ1 < 1/2 and τ2 > 0.

In order to obtain the twisted conical entropy, we can decompose the summation over

w as

w = Nα+ β, (4.10)
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where α runs all integers from −∞ to ∞, while β takes 0, 1, 2, · · ·, N − 1.

After we did the Poisson resummation:

∑

γ∈Z
exp(−πaγ2 + 2πibγ) =

1√
a

∑

α∈Z
exp

(

− π(α− b)2

a

)

, (4.11)

we find

Zclosed

[

(C×S1)/ZN×R7
]

=Z0

∫

S

dτ2

τ52

√
α′τ2
NR

∑

γ∈Z

N−1
∑

β=0

e−
πα′τ2
R2N2 γ

2 ·e2πi
βγ
N

|θ1(β/N |τ)|8
|η(τ)|18 · |θ1(2β/N |τ)|2 .

(4.12)

Note that we can omit the contribution from β = 0 in (4.12) as it is vanishing using the

properties of theta functions.

To simplify our analysis, we will take the two differen limits of integrand: the IR limit:

τ2 → ∞ and UV limit: τ2 → 0. Then we will obtain some analytical results from these

formula and we can obtain important behaviors of twisted conical entropy in the coming

two subsections.

4.4 IR limit τ2 → ∞

First let us study the expression (4.12) in the IR limit τ2 → ∞. In appendix B, we have

shown the details how to do the summation to the all orders of exp(−τ2). In this case, the

summation is localized at γ = 0. Thus we find in this limit:

Zclosed

[

(C × S1)/ZN ×R7
]

≃ 64 · Z0

∫

S

dτ2

τ52

√
α′τ2
NR

·
N−1
∑

β=0

sin8
(

πβ
N

)

sin2
(

2πβ
N

) . (4.13)

Notice that there is no tachyonic divergence as the twisted sector contributions, which

include localized closed string tachyons [21–23, 25], are removed by the folding trick and

are hidden in the τ2 → 0 limit as we will see in the next subsection.

Therefore we need to evaluate

g(N) ≡
N−1
∑

β=0

sin8
(

πβ
N

)

sin2
(

2πβ
N

) . (4.14)

It is easy to see that for N = 3, 5, 7, · · ·, we can show

g(N) =
1

4
N2 − 15

32
N. (4.15)

Note that this does not satisfy the standard condition g(1) = 0. This is the subtle issue

discussed in the section 2.3. Following the prescription (2.20) and (2.21) of conical entropy

given in section 2.4, we can simply take the derivative of g(N) in (4.15) and setN = 1, which

leads to g′(1) = 1/32. Indeed, if we decompose (4.14) into each SO(2) spin components,

they correspond to the type II supergravity multiplet.

– 15 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
6

In this way, we finally get the IR estimation of the twisted conical entropy S̃A for the

type II string theory on R9 × S1 (radius of S1 is Rorb):

S̃A(Rorb) ≃ 2Z0 ·
Rorb√
α′

∫

S

dτ2

τ
9/2
2

∼ V7

α′7/2 , (4.16)

which clearly converges in the integral region of the IR limit τ2 → ∞. That is to say there

is no divergence induced by the tachyon in the (4.12) and the twisted conical entropy is

well defined in the IR region.

4.5 UV limit: τ2 → 0

Next we would like to study expression (4.12) in the UV limit τ2 → 0. Let us define the

following function first:1

f(τ) ≡
θ1

(

β
N |τ

)4

η(τ)9θ1

(

2β
N |τ

) . (4.17)

We can expand f(τ) as

f(τ) =
∞
∑

n=0

dne
2πiτn. (4.18)

We want to make use of the saddle point approximation to estimate the leading behavior

of τ → 0. By taking the limit τ → 0 and using the modular transformation, we find the

behavior

f(τ) ≃ (τ2)
3e

2πβ
Nτ2 (0 < β/N < 1/2),

≃ (τ2)
3e

2π
τ2
(1− β

N ) (1/2 < β/N < 1). (4.19)

This leads to the following estimation for large n when 0 < β/N < 1/2 (up to a

numerical constant):

dn ∼
(

β

N

)7/4

n−9/4e
4π

√

βn
N , (4.20)

where we approximated as follows in the limit τ2 → 0

∞
∑

n=0

e
−2πτ2

(√
n−

√
β

τ2
√

N

)2

≃ 2

∫ ∞

−∞
dy

(

y +

√
β

τ2
√
N

)

e−2πτ2y2 =

√

2β

N
(τ2)

−3/2, (4.21)

where we defined y =
√
n−

√
β

τ2
√
N
. Thus we can evaluate the following important ingredient

of our partition function

∫ 1/2

−1/2
dτ1|f(τ)|2 =

∑

n

(dn)
2e−4πτ2n ∼

√

N

β
(τ2)

15/2 · e4π
β

Nτ2 . (4.22)

1The precise study on the asymptotic behavior of negative index Jacobi forms f(τ) is given by residues

theorem and Fourier expansion in [50].
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We can similarly obtain the estimation of dn when 1/2 < β/N < 1 by replacing β with

N − β.

It is clear from (4.9) that the divergences in the integration of τ2 near τ2 = 0 in the

partition function are convergent for sufficiently large values of R. This means that the

twisted (Renyi) conical entropy S̃
(n)
A is well-defined for any N(≥ 1) when R is large enough.

On the other hand, we are more interested in the small R limit so that it is related to the

original orbifold theory. Then we immediately find that the τ2 integral gets divergent near

τ2 = 0 due to the Hagedorn behavior (4.22), which is related to the presence of closed string

tachyons. However, as we will see below, we are still able to evaluate the N = 1 limit i.e. the

twisted conical entropy S̃A, while for anyN > 1, S̃
(n)
A suffers from the tachyonic divergences.

However, note that the analytical continuation of the summation (4.23) does not have any

divergence in the limit τ2 → 0 for the original Renyi entropy region N = 1/n < 1.

Now, in order to evaluate the partition function (4.12), we need to perform the sum-

mation over β:

h(N) =

N−1
2

∑

β=1

√

N

β
e2πi

βγ
N e

4πβ
Nτ2 +

N−1
∑

β=N+1
2

√

N

N − β
e2πi

βγ
N e

4π(N−β)
Nτ2

= 2 Re





N−1
2

∑

β=1

√

N

β
e2πi

βγ
N e

4πβ
Nτ2



 , (4.23)

where Re[z] denotes the real part of z. By replacing
√

N
β with the integral

∫∞
−∞ dxe−πβx2/N ,

we find

∂h(N)

∂N

∣

∣

∣

N=1
=

∫ ∞

−∞
dx

4π
τ2

− πx2

1− e
− 4π

τ2
+πx2

, (4.24)

where the γ dependence cancels out. This can be estimated in the limit τ2 → 0 as follows

∂h(N)

∂N

∣

∣

∣

N=1
= −

∫ ∞

− 4π
τ2

zdz
√
π
√

4π
τ2

+ z(1− ez)
≃ 32π

3
(τ2)

−3/2, (4.25)

where we defined z = πx2 − 4π
τ2
.

The partition function (4.12) is now evaluated as follows (up to a O(1) constant)

Zclosed

[

(C × S1)/ZN ×R7
]

∼ Z0 ·
Rorb√
α′

∫ τmax

0
dτ2(τ2)

3 · h(N) ·
∑

γ∈Z
e−

πR2
orb

τ2γ
2

α′ , (4.26)

where τmax is the upper bound where we can apply the τ2 → 0 approximation. Then,

using the above results, we would like to estimate the twisted cone entropy by taking the

derivative w.r.t. N , following the definition (4.7). This leads to (note the identity h(1) = 0)

S̃A ∼ V7

α′7/2

∫ τmax

0
dτ2(τ2)

3/2
∑

γ∈Z
e−

πR2
orb

τ2γ
2

α′ . (4.27)
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In this way, we finally obtain the following estimation for the UV contributions:

[S̃A]UV ≃ V7

α′7/2

(

s1 + s2 ·
α′5/2

R5
orb

)

, (4.28)

where s1 and s2 are O(1) numerical constants and we assumed Rorb ≫
√
α′. If we consider

the opposite limit Rorb ≪
√
α′, we have (4.28) with s2 = 0.

4.6 Summary

In summary, we find that the moduli integral of the twisted conical entropy S̃A does

converge both in the IR and UV region. Since it is clear that these regions are only

possible sources of divergence as usual in string theory, we can argue that the twisted

conical entropy is finite in superstring. Note that if we do the similar analysis for bosonic

string Melvin backgrounds [43], the twisted conical entropy will get divergence as is so in

the torus partition function for bosonic string on the flat space. Also the Renyi version

S̃
(n)
A with n = 1/N < 1 turns out to be divergent even for superstring in general due to the

closed string tachyons.

Our estimation leads to the following form of the (von-Neumann) twisted conical en-

tropy in superstring on C × S1 ×R7:

S̃A(Rorb) =
V7

α′7/2 · S̃
(

Rorb√
α′

)

, (4.29)

where V7 is the volume of the 7 dimensional flat spaceR7. Moreover, our analysis shows that

the function S̃
(

Rorb√
α′

)

in (4.29) approaches to a finite constant S̃0 in the limit Rorb → ∞
as follows from (4.28). Therefore in the large radius limit Rorb → ∞, the twisted conical

entropy behaves as follows:

S̃A(Rorb) ≃ s̃ · V7

α′7/2 . (4.30)

If we do the same calculation in a quantum field theory compactified on a circle with the

small radius R = α′

Rorb
, it is obvious that we will find it is UV divergent as S̃A ∼ V7

ε7
, where

ε is the UV cut off (or lattice spacing) because the Kaluza-Klein modes are suppressed

in the small radius limit. In superstring, as we have seen, this UV divergence is removed

owing to the string scale cutoff as expected. In this sense the above result is analogous to

our original expectation (1.1).

Now we would like to get back to our original problem of computing the conical entropy

SA in superstring. As the Melvin background (C×S1)/ZN×R7 is reduced to the C/ZN×R8

orbifold in the small radius limit R = α′

NRorb
→ 0, we expect that the leading contribution

of the twisted conical entropy S̃A coincides with the conical entropy SA in this limit. It

is natural to expect that the conical entropy SA in superstring is proportional to the 8

dimensional area of the boundary ∂A of the subsystem A as in (1.1). Therefore, the

absence of a term proportional to the 8 dimensional area V7 · Rorb in S̃A (4.30) implies

that the conical entropy in superstring at one-loop level (torus amplitude) is actually

vanishing. Indeed, this agrees with the conjecture in [20] as speculated from the absence

of the renormalization of Newton constant. We will leave a direct confirmation of this

expectation as an important future problem.
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5 Conclusions

The main purpose of this paper was to study the conical entropy SA in string theory.

The conical entropy is defined as the entanglement entropy computed by using the replica

method and it is not guaranteed to be positive as it includes the surface term contributions.

In terms of black hole entropy for the Rindler horizon, our conical entropy from string

theory one-loop amplitudes corresponds to the leading quantum corrections [20].

As a warmup, we started with a computation of the conical entropy for free fields with

any higher spins. By using an interpolation between the replicated space and the orbifold

C/ZN , we find a new simple way to evaluate the conical entropy for free higher spin fields.

Not only our method successfully reproduces the know results [30, 33] for spin 0, 1/2, 1, 3/2

and 2, but also it offers a simple formula for any higher spins.

Next we calculated the conical entropy for open string theory. The evaluation is easier

than that for closed string as we only need to perform a single summation corresponding to

the ZN projection. Though we manage to find an explicit expression in terms of summations

over massive modes, the conical entropy turns out to be divergent even in superstring unless

some miraculous cancellations occur. This is due to the UV divergence and can be regarded

as the summation of area law divergences over all open string modes. The fact that the

conical entropy is divergent implies that this calculation is not trustable. To resolve this

issue, we will need to take into account the back reactions of open strings to the closed

string sector as we do so in the AdS/CFT setup. We will leave this for a future work.

Finally we studied the conical entropy for type II closed string. We focused on the

contributions from the one-loop torus vacuum amplitudes, which are interpreted as the

conical entropy of free superstring theory based on the replica method. One of the most

interesting aspects of this calculation in closed superstring is that the moduli integral is

limited to the fundamental region as opposed to the open superstring. This is the basic

mechanism of the UV cut off in string theory and can be a possibility to get a finite conical

entropy. However, a technical problem arises immediately in order to evaluate the conical

entropy explicitly. This is because we need to perform double sum at the same time: one

is the orbifold projection and the other is the summation over twisted sectors.

To remedy this problem, we turned to a modified quantity called the twisted conical

entropy S̃A, which is defined as a conical entropy not for the orbifold C/ZN × R8 but for

the Melvin orbifold (C×S1)/ZN ×R7. In this case we can first rewrite the double sum into

a single sum by employing the folding trick, which changes the integral on the fundamental

region into that on the strip removing one of the two summations. Owing to this trick

we can evaluate the twisted conical entropy S̃A and can confirm that this quantity is UV

finite as expected in superstring theory. Note also that our twisted (Renyi) conical entropy

S̃
(n)
A is well-defined and finite for any n = 1/N only when the radius R is large enough

compared with the string scale
√
α′ so that there is no closed string tachyons. On the other

hand, if R is very small, we find S̃
(n)
A gets divergent due to the tachyons. However we can

still define the N = 1 limit S̃A as a finite quantity even in this case. Since the equations of

motion in string theory are fully satisfied at N = 1 including the tachyon fields, we believe

that the effect of closed string tachyon condensation appears in the partition function at

– 19 –
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order O((N − 1)2) and thus do not affect S̃A. Moreover we observed that the analytical

continuation of the partition function does not have any UV divergences for N < 1.

In order to go back to our original problem of computing the conical entropy, we

need to take the small radius limit of Melvin background. We expect that the leading

contribution of twisted conical entropy S̃A in this limit is reduced to the conical entropy

SA. We find that in this limit, S̃A does not have any contributions which are proportional

to the area (or any higher power) of the boundary ∂A. Therefore this result indirectly

seems to support the conjecture [20] that (quantum corrections to) the conical entropy SA

in type II closed superstring is vanishing. It will be a very interesting future problem to

discover a direct method to evaluate the conical entropy in superstring.

After our paper appeared on the arXiv, we were aware of the independent paper [55],

where the entanglement entropy of higher spin fields has been computed in the replica

method assuming a negative deficit angle instead of positive one as opposed to our orbifold

approach. In particular, they found that the entropy for a graviton field from the replica

method is different from the conical entropy due to the subtle treatment of surface terms.

Their results are continuous in the n = 1 (or N = 1) limit. It might be interesting to

perform a similar replica analysis to compute the entanglement entropy in string theory.

However, we need to overcome an interesting but highly challenging problem to construct

a string theory on the n-replicated spacetime.
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A Folding trick

We are interested in the following generic formula

Z(A,B) =

∫

F

(dτ)2

(τ2)5

∑

n,m∈Z

|θ1(B(n−mτ)
2 |τ)|8

|η(τ)|18|θ1(B(n−mτ)|τ)|2 × exp

[

−A|n−mτ |2
τ2

]

. (A.1)

Where F stands for the fundamental domain in complex plane and A,B are arbitrary

positive constants. We will do the modular transformation as

τ → τ ′ =
aτ + b

cτ + d
(ad− bc = 1) (A.2)
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for (A.1). We can obtain following transformation rules:

τ ′2 =
τ2

|cτ + d|2 (A.3)

n−mτ ′ =
(nc−ma)τ + (nd−mb)

|cτ + d|2 (A.4)

|η(τ ′)| = |(cτ + b)| 12 |η(τ)| (A.5)

θ1
(

B(n−mτ ′)|τ ′
)

= θ1

(

B(nc−ma)τ + (nd−mb)

cτ + d
|aτ + b

cτ + d

)

(A.6)

θ1

(

Br

cτ + d
|aτ + b

cτ + d

)

= ξr(cτ + d)
1
2 eiπ

(Br)2c
cτ+d θ1(Br|τ). (A.7)

Where ξ8r = 1 and r are arbitrary positive integers and (A.7) are related to the nice property

of modular function θ(µ|τ). We can make use of these transformation rules to the integrand

given in (A.3) (A.4) (A.5) (A.6):

Z(A,B) =

∫

F

(dτ)2

(τ2)5

∑

n,m∈Z

|(cτ + d)|6|θ1(B(nc−ma)τ+(nd−mb)
2(cτ+d) |aτ+b

cτ+d)|8

|(cτ + d)|9|η(τ)|18|θ1(B(nc−ma)τ+(nd−mb)
cτ+d |aτ+b

cτ+d)|2
×

exp

[

−A|(nc−ma)τ + (nd−mb)|2
τ2

]

. (A.8)

We need to sum over all n,m ∈ Z and choose the integers (a, b, c, d) such that nc−ma = 0.

Since a and c are coprime, we can express n and m as n = ra and m = rc, where r = [m,n]

is the greatest common divisor of m and n. Here we just replace the double sum in the

following way

∑

m,n

[...] =
∑

r

∑

[m,n]=r

[...], (A.9)

following papers [51–53].

Therefore, we can simplify the integration as

Z(A,B) =

∫

F

(dτ)2

(τ2)5

∑

r∈Z

∑

[m,n]=r

|θ1( Br
2(cτ+d) |

aτ+b
cτ+d)|8

|η(τ)|18|θ1( Br
cτ+d |aτ+b

cτ+d)|2
exp

[

−Ar2

τ2

]

1

|cτ + d|3 , (A.10)

=

∫

S

(dτ)2

(τ2)5

∑

r∈Z

|θ1(Br
2 |τ)|8

|η(τ)|18|θ1(Br|τ)|2 × exp

[

−Ar2

τ2

]

. (A.11)

Where we have made use of (nd−mb) = r in (A.10) and applied transformation rule (A.7)

in the final identity (A.11). The final step in (A.11) is explained by applying the arguments

in [51–53] and the modular invariance of (A.1). The sum over all pairs (m,n) with fixed

r = [m,n] enlarges the fundamental domain F into the strip domain S defined by −1
2 <

τ1 < 1
2 , τ2 > 0. In this way, we can simplify the double summation in (A.1) as a single

summation finally.
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B Summation

In this appendix, we would like to show some details about how to do the summation

appeared in this paper. Especially here we want to explain the summation (4.12) in section

(5.2) as an example. This kind of procedure can also be applied to other summations

appeared in this paper and we do not repeat these details here. The partition function has

following form

∫

S

(dτ)2

(τ2)5

∑

α∈Z

N−1
∑

β=0

sin8(βπN )

sin2(2βπN )
×√

τ2 exp

[

−π2τ2α
2

AN2
+

2πiβα

N

]

(B.1)

where we made use of Possion resummation formula

∑

α

1√
τ2

exp
(

− πA(Nα2 + β)2

πτ2

)

=
∑

α

exp
(

− π2τ2α
2

AN2
+

2πiβα

N

)

. (B.2)

In this part, our calculation will be reduced to the following summation

Sker =
∞
∑

α=−∞

N−1
∑

β=0

sin8(βπN )

sin2(2βπN )
exp(

2πiβα

N
)e−

πτ2α
2

AN2

=

∞
∑

α=−∞

N−1
∑

β=0

(

− 1

64
cos

(

2πβ(α− 2)

N

)

− 15

32
cos

(

2παβ

N

)

+
1

8
cos

(

2πβ(α− 1)

N

)

+
1

8
cos

(

2πβ(α+ 1)

N

)

− 1

64
cos

(

2πβ(α+2)

N

)

+
1

4
cos

(

2παβ

N

)

sec2
(

πβ

N

))

e−
πτ2α

2

AN2

=
∞
∑

α=1

1

2
S3(N,α mod N, 1)e−

πτ2α
2

AN2 +
1

4
N2 − 15N

32

+
∞
∑

α=1

(

− 15

32
sin(2πα) cot

(πα

N

))

e−
πτ2α

2

AN2 . (B.3)

Where we have employed the formula
∑N−1

β=0 cos(βx) = 1
2

(

1 +
sin(N− 1

2
)x

sin(x
2
)

)

and ϑ3(u, q) = 2
∑∞

n=1 q
n2
(cos(2nu))+1 as well as the definition of S3(N,α mod N, 1)

given by [54] as follows

S3(q, r, n) : =

q−1
∑

p=1

cos(
2rpπ

q
) csc2n

(

pπ

q

)

=
(−1)n−122n

2n!

n
∑

α=0

(

2n

2α

)

B2α

(

r

q

)

B
(2n)
2n−2α(n)q

2α. (B.4)

Here we just focus on the left summation in (B.3),

∞
∑

α=1

1

2
S3(N,α mod N, 1) =

∞
∑

α=1

1
∑

k=0

((

2

2k

)

B2k({
α

N
})B(2)

2k (1)N
2k

)

e−
πτ2α

2

AN2

=
∞
∑

α=0

[

−1

6
B0

(

{ α
N

}
)

+N2B2({
α

N
})
]

e−
πτ2α

2

AN2 . (B.5)
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Where {x} denotes the fractional part of real number x and the formal definition is {x} =

x − ⌊x⌋, x ∈ R. The floor function ⌊x⌋ gives the largest integer less than or equal to x.

The Bernoulli polynomials Bm
n (x) of order m and of degree n in x (sometimes also called

the higher order or generalized Bernoulli polynomials) can be defined by following relation

(

t

et − 1

)m

ext =
∞
∑

n=0

B(m)
n (x)

tn

n!
(|t| < 2π;m ∈ N0 := N

⋃

{0}). (B.6)

In the last step of (B.5) , we have used fact B
(2)
2 (1) = −1

6 , B
(2)
0 = 1. The Bernoulli numbers

B
(m)
n (x) of order m and degree n defined by

B(m)
n (x) =

n
∑

k

B
(m)
k xn−k (B.7)

with B
(m)
n = B

(m)
n (0). Combined (B.3) and (B.5), the partition function of string theory

on the Melvin background Zclosed

[

(C × S1)/ZN ×R7
]

defined in (4.8) can be evaluated as

follows in large τ2 limit:

Zclosed

[

(C × S1)/ZN ×R7
]

∼
∫

S

(dτ)2

(τ2)
9
2

(

1

4
N2 − 15N

32
+

∞
∑

α=1

(

− 1

6
+

N2

6

(

1− 6

{

α

N

}

+ 6

{

α

N

}2)

−15

32
sin(2πα) cot

(πα

N

)

)

e−
α′τ2α

2

R2N2

)

. (B.8)

Where we used A = πR2

α′ in terms of our convention. Therefore, the leading contribution

is
∫

S
(dτ)2

(τ2)
9
2

(

1
4N

2 − 15N
32

)

which is consistent with (4.14) up to leading order O(exp(−τ2)).
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