7 research outputs found

    Thorough in silico and in vitro cDNA analysis of 21 putative BRCA1 and BRCA2 splice variants and a complex tandem duplication in BRCA2 allowing the identification of activated cryptic splice donor sites in BRCA2 exon 11

    Get PDF
    For 21 putative BRCA1 and BRCA2 splice site variants, the concordance between mRNA analysis and predictions by in silico programs was evaluated. Aberrant splicing was confirmed for 12 alterations. In silico prediction tools were helpful to determine for which variants cDNA analysis is warranted, however, predictions for variants in the Cartegni consensus region but outside the canonical sites, were less reliable. Learning algorithms like Adaboost and Random Forest outperformed the classical tools. Further validations are warranted prior to implementation of these novel tools in clinical settings. Additionally, we report here for the first time activated cryptic donor sites in the large exon 11 of BRCA2 by evaluating the effect at the cDNA level of a novel tandem duplication (5 breakpoint in intron 4; 3 breakpoint in exon 11) and of a variant disrupting the splice donor site of exon 11 (c.6841+1G>C). Additional sites were predicted, but not activated. These sites warrant further research to increase our knowledge on cis and trans acting factors involved in the conservation of correct transcription of this large exon. This may contribute to adequate design of ASOs (antisense oligonucleotides), an emerging therapy to render cancer cells sensitive to PARP inhibitor and platinum therapies

    Workforce Implications of Increased Referrals to Hereditary Cancer Services in Canada: A Scenario-Based Analysis

    No full text
    Over the last decade, utilization of clinical genetics services has grown rapidly, putting increasing pressure on the workforce available to deliver genetic healthcare. To highlight the policy challenges facing Canadian health systems, a needs-based workforce requirements model was developed to determine the number of Canadian patients in 2030 for whom an assessment of hereditary cancer risk would be indicated according to current standards and the numbers of genetic counsellors, clinical geneticists and other physicians with expertise in genetics needed to provide care under a diverse set of scenarios. Our model projects that by 2030, a total of 90 specialist physicians and 326 genetic counsellors (1.7-fold and 1.6-fold increases from 2020, respectively) will be required to provide Canadians with indicated hereditary cancer services if current growth trends and care models remain unchanged. However, if the expansion in eligibility for hereditary cancer assessment accelerates, the need for healthcare providers with expertise in genetics would increase dramatically unless alternative care models are widely adopted. Increasing capacity through service delivery innovation, as well as mainstreaming of cancer genetics care, will be critical to Canadian health systems’ ability to meet this challenge.Medicine, Faculty ofPharmaceutical Sciences, Faculty ofNon UBCMedical Genetics, Department ofReviewedFacultyResearche

    Report from the 24th Annual Western Canadian Gastrointestinal Cancer Consensus Conference on Colorectal Cancer, Richmond, British Columbia, 28–29, October 2022

    No full text
    The 24th annual Western Canadian Gastrointestinal Cancer Consensus Conference (WCGCCC) was held in Richmond, British Columbia, on 28–29 October 2022. The WCGCCC is an interactive multidisciplinary conference attended by healthcare professionals from across Western Canada (British Columbia, Alberta, Saskatchewan, and Manitoba) who are involved in the care of patients with gastrointestinal cancer. Surgical, medical, and radiation oncologists; pathologists; radiologists; and allied health care professionals such as dieticians, nurses and a genetic counsellor participated in presentation and discussion sessions for the purpose of developing the recommendations presented here. This consensus statement addresses current issues in the management of colorectal cancer.Non UBCReviewedFacultyResearche

    Oncology Clinic-Based Hereditary Cancer Genetic Testing in a Population-Based Health Care System

    No full text
    New streamlined models for genetic counseling and genetic testing have recently been developed in response to increasing demand for cancer genetic services. To improve access and decrease wait times, we implemented an oncology clinic-based genetic testing model for breast and ovarian cancer patients in a publicly funded population-based health care setting in British Columbia, Canada. This observational study evaluated the oncology clinic-based model as compared to a traditional one-on-one approach with a genetic counsellor using a multi-gene panel testing approach. The primary objectives were to evaluate wait times and patient reported outcome measures between the oncology clinic-based and traditional genetic counselling models. Secondary objectives were to describe oncologist and genetic counsellor acceptability and experience. Wait times from referral to return of genetic testing results were assessed for 400 patients with breast and/or ovarian cancer undergoing genetic testing for hereditary breast and ovarian cancer from June 2015 to August 2017. Patient wait times from referral to return of results were significantly shorter with the oncology clinic-based model as compared to the traditional model (403 vs. 191 days; p < 0.001). A subset of 148 patients (traditional n = 99; oncology clinic-based n = 49) completed study surveys to assess uncertainty, distress, and patient experience. Responses were similar between both models. Healthcare providers survey responses indicated they believed the oncology clinic-based model was acceptable and a positive experience. Oncology clinic-based genetic testing using a multi-gene panel approach and post-test counselling with a genetic counsellor significantly reduced wait times and is acceptable for patients and health care providers.Medicine, Faculty ofNon UBCMedical Genetics, Department ofMedical Oncology, Division ofMedicine, Department ofObstetrics and Gynaecology, Department ofPathology and Laboratory Medicine, Department ofPopulation and Public Health (SPPH), School ofReviewedFacult
    corecore