22 research outputs found

    The accuracy of several multiple sequence alignment programs for proteins

    Get PDF
    BACKGROUND: There have been many algorithms and software programs implemented for the inference of multiple sequence alignments of protein and DNA sequences. The "true" alignment is usually unknown due to the incomplete knowledge of the evolutionary history of the sequences, making it difficult to gauge the relative accuracy of the programs. RESULTS: We tested nine of the most often used protein alignment programs and compared their results using sequences generated with the simulation software Simprot which creates known alignments under realistic and controlled evolutionary scenarios. We have simulated more than 30000 alignment sets using various evolutionary histories in order to define strengths and weaknesses of each program tested. We found that alignment accuracy is extremely dependent on the number of insertions and deletions in the sequences, and that indel size has a weaker effect. We also considered benchmark alignments from the latest version of BAliBASE and the results relative to BAliBASE- and Simprot-generated data sets were consistent in most cases. CONCLUSION: Our results indicate that employing Simprot's simulated sequences allows the creation of a more flexible and broader range of alignment classes than the usual methods for alignment accuracy assessment. Simprot also allows for a quick and efficient analysis of a wider range of possible evolutionary histories that might not be present in currently available alignment sets. Among the nine programs tested, the iterative approach available in Mafft (L-INS-i) and ProbCons were consistently the most accurate, with Mafft being the faster of the two

    SIMPROT: Using an empirically determined indel distribution in simulations of protein evolution

    Get PDF
    BACKGROUND: General protein evolution models help determine the baseline expectations for the evolution of sequences, and they have been extensively useful in sequence analysis and for the computer simulation of artificial sequence data sets. RESULTS: We have developed a new method of simulating protein sequence evolution, including insertion and deletion (indel) events in addition to amino-acid substitutions. The simulation generates both the simulated sequence family and a true sequence alignment that captures the evolutionary relationships between amino acids from different sequences. Our statistical model for indel evolution is based on the empirical indel distribution determined by Qian and Goldstein. We have parameterized this distribution so that it applies to sequences diverged by varying evolutionary times and generalized it to provide flexibility in simulation conditions. Our method uses a Monte-Carlo simulation strategy, and has been implemented in a C++ program named Simprot. CONCLUSION: Simprot will be useful for testing methods of analysis of protein sequence families particularly alignment methods, phylogenetic tree building, detection of recombination and horizontal gene transfer, and homology detection, where knowing the true course of sequence evolution is essential

    WormBase 2016: expanding to enable helminth genomic research

    Get PDF
    WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research

    EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epithelial to mesenchymal transition (EMT) is a molecular process through which an epithelial cell undergoes transdifferentiation into a mesenchymal phenotype. The role of EMT in embryogenesis is well-characterized and increasing evidence suggests that elements of the transition may be important in other processes, including metastasis and drug resistance in various different cancers.</p> <p>Methods</p> <p>Agilent 4 × 44 K whole human genome arrays and selected reaction monitoring mass spectrometry were used to investigate mRNA and protein expression in A2780 cisplatin sensitive and resistant cell lines. Invasion and migration were assessed using Boyden chamber assays. Gene knockdown of <it>snail </it>and <it>slug </it>was done using targeted siRNA. Clinical relevance of the EMT pathway was assessed in a cohort of primary ovarian tumours using data from Affymetrix GeneChip Human Genome U133 plus 2.0 arrays.</p> <p>Results</p> <p>Morphological and phenotypic hallmarks of EMT were identified in the chemoresistant cells. Subsequent gene expression profiling revealed upregulation of EMT-related transcription factors including <it>snail, slug, twist2 </it>and <it>zeb2</it>. Proteomic analysis demonstrated up regulation of Snail and Slug as well as the mesenchymal marker Vimentin, and down regulation of E-cadherin, an epithelial marker. By reducing expression of <it>snail </it>and <it>slug</it>, the mesenchymal phenotype was largely reversed and cells were resensitized to cisplatin. Finally, gene expression data from primary tumours mirrored the finding that an EMT-like pathway is activated in resistant tumours relative to sensitive tumours, suggesting that the involvement of this transition may not be limited to <it>in vitro </it>drug effects.</p> <p>Conclusions</p> <p>This work strongly suggests that genes associated with EMT may play a significant role in cisplatin resistance in ovarian cancer, therefore potentially leading to the development of predictive biomarkers of drug response or novel therapeutic strategies for overcoming drug resistance.</p

    WormBase 2024: status and transitioning to Alliance infrastructure

    Get PDF
    WormBase has been the major repository and knowledgebase of information about the genome and genetics of Caenorhabditis elegans and other nematodes of experimental interest for over 2 decades. We have 3 goals: to keep current with the fast-paced C. elegans research, to provide better integration with other resources, and to be sustainable. Here, we discuss the current state of WormBase as well as progress and plans for moving core WormBase infrastructure to the Alliance of Genome Resources (the Alliance). As an Alliance member, WormBase will continue to interact with the C. elegans community, develop new features as needed, and curate key information from the literature and large-scale projects

    A program for representing and simulating population genetic phenomena

    No full text
    The paper describes a computer program for representing and simulating population genetic phenomena, such as the distribution of gene and genotype frequencies under different mating systems (panmixia, inbreeding and assortative mating systems) and under influence of evolution factors (mutation, selection, gene flow and genetic drift). The program was written in Visual Basic (Microsoft, Inc.) and is able to run in any IBM-PC compatible computer running Windows 3.1 or later versions

    Isolation of a Human Betaretrovirus from Patients with Primary Biliary Cholangitis

    No full text
    A human betaretrovirus (HBRV) has been linked with the autoimmune liver disease, primary biliary cholangitis (PBC), and various cancers, including breast cancer and lymphoma. HBRV is closely related to the mouse mammary tumor virus, and represents the only exogenous betaretrovirus characterized in humans to date. Evidence of infection in patients with PBC has been demonstrated through the identification of proviral integration sites in lymphoid tissue, the major reservoir of infection, as well as biliary epithelium, which is the site of the disease process. Accordingly, we tested the hypothesis that patients with PBC harbor a transmissible betaretrovirus by co-cultivation of PBC patients’ lymph node homogenates with the HS578T breast cancer line. Because of the low level of HBRV replication, betaretrovirus producing cells were subcloned to optimize viral isolation and production. Evidence of infection was provided by electron microscopy, RT-PCR, in situ hybridization, cloning of the HBRV proviral genome and demonstration of more than 3400 integration sites. Further evidence of viral transmissibility was demonstrated by infection of biliary epithelial cells. While HBRV did not show a preference for integration proximal to specific genomic features, analyses of common insertion sites revealed evidence of integration proximal to cancer associated genes. These studies demonstrate the isolation of HBRV with features similar to mouse mammary tumor virus and confirm that patients with PBC display evidence of a transmissible viral infection
    corecore